1 |
PALACIOS A, BARRENECHE C, NAVARRO M E, et al. Thermal energy storage technologies for concentrated solar power–A review from a materials perspective[J]. Renewable Energy, 2020, 156: 1244-1265. DOI: 10.1016/j.renene.2019.10.127.
|
2 |
喻潇, 蒋东荣, 肖昊, 等. 计及动态氢价的综合能源系统低碳经济调度[J]. 重庆理工大学学报(自然科学), 2024, 38(12): 197-206.
|
|
YU X, JIANG D R, XIAO H, et al. Low-carbon economic dispatch of integrated energy system taking into account dynamic hydrogen price[J]. Journal of Chongqing University of Technology (Natural Science), 2024, 38(12): 197-206.
|
3 |
陈东明. 管壳式蓄热器与复合相变材料的强化传热特性研究[D]. 青岛: 青岛科技大学, 2022. DOI: 10.27264/d.cnki.gqdhc.2022.000931.
|
|
CHEN D M. Study on the enhanced heat transfer characteristics of shell-and-tube latent heat exchanger and composite phase change material[D]. Qingdao: Qingdao University of Science & Technology, 2022. DOI: 10.27264/d.cnki.gqdhc.2022.000931.
|
4 |
WANG T, MANTHA D, REDDY R G. Novel low melting point quaternary eutectic system for solar thermal energy storage[J]. Applied Energy, 2013, 102: 1422-1429. DOI: 10.1016/j.apenergy. 2012.09.001.
|
5 |
贾笃雨, 田丽亭, 闵春华, 等. 壁面下方圆管加热熔盐自然对流换热的数值研究[J]. 中国科技论文, 2017, 12(23): 2737-2741. DOI: 10.3969/j.issn.2095-2783.2017.23.017.
|
|
JIA D Y, TIAN L T, MIN C H, et al. Numerical study on natural convection heat transfer of molten salt aroundcirculartubeunder upper-wall[J]. China Sciencepaper, 2017, 12(23): 2737-2741. DOI: 10.3969/j.issn.2095-2783.2017.23.017.
|
6 |
张静如, 韦安柱. 熔盐在太阳能热发电中的应用与发展前景[J]. 石油商技, 2017, 35(2): 16-21. DOI: 10.3969/j.issn.1006-1479.2017.02.003.
|
|
ZHANG J R, WEI A Z. Application and development prospect of molten salt in solar thermal power generation[J]. Petroleum Products Application Research, 2017, 35(2): 16-21. DOI: 10.3969/j.issn.1006-1479.2017.02.003.
|
7 |
FENG J H, MAO L, YUAN G C, et al. Grain size effect on corrosion behavior of Inconel 625 film against molten MgCl2-NaCl-KCl salt[J]. Corrosion Science, 2022, 197: 110097. DOI: 10.1016/j.corsci.2022.110097.
|
8 |
YU Q, ZHANG C C, LU Y W, et al. Comprehensive performance of composite phase change materials based on eutectic chloride with SiO2 nanoparticles and expanded graphite for thermal energy storage system[J]. Renewable Energy, 2021, 172: 1120-1132. DOI: 10.1016/j.renene.2021.03.061.
|
9 |
王元聪, 桑丽霞. 基于相图低成本高温混合熔盐的配制及其热物性[J]. 工程热物理学报, 2023, 44(7): 1768-1773.
|
|
WANG Y C, SANG L X. Preparation of low-cost and high-temperature mixed molten salts based on phase diagram and their thermophysical property[J]. Journal of Engineering Thermophysics, 2023, 44(7): 1768-1773.
|
10 |
何聪, 鹿院卫, 宋文兵, 等. 新型相同钠离子混合熔盐相图预测及物性测量[J]. 储能科学与技术, 2021, 10(5): 1729-1734. DOI: 10.19799/j.cnki.2095-4239.2021.0320.
|
|
HE C, LU Y W, SONG W B, et al. The phase diagram prediction and experimental study of ternary same cation systems[J]. Energy Storage Science and Technology, 2021, 10(5): 1729-1734. DOI: 10.19799/j.cnki.2095-4239.2021.0320.
|
11 |
王元媛, 鹿院卫, 樊占胜, 等. KNO3-NaNO2-KNO2三元系相图筛选及物性测试[J]. 太阳能学报, 2024, 45(9): 662-667. DOI: 10.19912/j.0254-0096.tynxb.2023-0782.
|
|
WANG Y Y, LU Y W, FAN Z S, et al. Phase diagram screening and physical property testing of KNO3-NaNO2-KNO2 ternary system[J]. Acta Energiae Solaris Sinica, 2024, 45(9): 662-667. DOI: 10.19912/j.0254-0096.tynxb.2023-0782.
|
12 |
来兴. 高潜热NaNO3-NaCl-NaF熔盐的传蓄热特性研究[D]. 西宁: 青海大学, 2022. DOI: 10.27740/d.cnki.gqhdx.2022.000282.
|
|
LAI X. Heat transfer and storage characteristics of high latent heat NaNO3-NaCl-NaF molten salts[D]. Xining: Qinghai University, 2022. DOI: 10.27740/d.cnki.gqhdx.2022.000282.
|
13 |
曹战民, 宋晓艳, 乔芝郁. 热力学模拟计算软件FactSage及其应用[J]. 稀有金属, 2008, 32(2): 216-219. DOI: 10.13373/j.cnki.cjrm.2008.02.026.
|
|
CAO Z M, SONG X Y, QIAO Z Y. Thermodynamic modeling software FactSage and its application[J]. Chinese Journal of Rare Metals, 2008, 32(2): 216-219. DOI: 10.13373/j.cnki.cjrm. 2008.02.026.
|
14 |
陈芳. 离子液体的团簇结构对其混合体系性质影响的理论与模拟研究[D]. 北京: 北京化工大学, 2022. DOI: 10.26939/d.cnki.gbhgu. 2022.002112.
|
|
CHEN F. Theoretical and simulation studies of the cluster formation and its effect on the properties of mixed ionic liquid systems[D]. Beijing: Beijing University of Chemical Technology, 2022. DOI: 10.26939/d.cnki.gbhgu.2022.002112.
|
15 |
RAJAGOPALAN R, TANG Y G, JI X B, et al. Advancements and challenges in potassium ion batteries: A comprehensive review[J]. Advanced Functional Materials, 2020, 30(12): 1909486. DOI: 10.1002/adfm.201909486.
|
16 |
王立娟. 高温混合碳酸盐的热物性及腐蚀性实验研究[D]. 北京: 北京建筑大学, 2016.
|
|
WANG L J. Experimental study on thermal physical properties and corrosion resistance of high temperature mixed carbonate[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2016.
|
17 |
张天福. 高温熔盐罐内熔化过程优化及控制研究[D]. 北京: 华北电力大学, 2021. DOI: 10.27140/d.cnki.ghbbu.2021.001365.
|
|
ZHANG T F. Research on optimization and control of melting process in high temperature molten salt[D]. Beijing: North China Electric Power University, 2021. DOI: 10.27140/d.cnki.ghbbu. 2021.001365.
|
18 |
文龙. 硝酸熔盐储能传热材料的研究与进展[J]. 广州化工, 2017, 45(6): 22-23, 52.
|
|
WEN L. Research progress and application on nitrate salt thermal storage and heat transfer media used for concentrating solar power[J]. Guangzhou Chemical Industry, 2017, 45(6): 22-23, 52.
|
19 |
ZHANG T Y, ZHANG Z H, ARNOLD M A. Polarizability of aspirin at terahertz frequencies using terahertz time domain spectroscopy (THz-TDS)[J]. Applied Spectroscopy, 2019, 73(3): 253-260. DOI: 10.1177/0003702818815177.
|