储能科学与技术 ›› 2025, Vol. 14 ›› Issue (6): 2540-2554.doi: 10.19799/j.cnki.2095-4239.2025.0001
段永龙1(), 滑夏1, 韩子娇2, 谢冰2, 胡姝博2, 李爱魁1(
)
收稿日期:
2025-01-02
修回日期:
2025-01-22
出版日期:
2025-06-28
发布日期:
2025-06-27
通讯作者:
李爱魁
E-mail:961750695@qq.com;liaikui@dlut.edu.cn
作者简介:
段永龙(2000—),男,硕士研究生,研究方向为液流电池储能技术,E-mail:961750695@qq.com;
基金资助:
Yonglong DUAN1(), Xia HUA1, Zijiao HAN2, Bing XIE2, Shubo HU2, Aikui LI1(
)
Received:
2025-01-02
Revised:
2025-01-22
Online:
2025-06-28
Published:
2025-06-27
Contact:
Aikui LI
E-mail:961750695@qq.com;liaikui@dlut.edu.cn
摘要:
全钒液流电池具有寿命长、安全性高、能量控制管理简单、功率和容量完全解耦等优点,适用于新型电力系统中新能源发电波动平滑、削峰填谷、稳压调频等应用场景,近年来已经开始规模化推广应用。由于隔膜等关键材料特性、电堆及管道系统结构、电解液成分等全钒液流电池的固有特点,其运行过程中存在容量衰减问题,为保障全钒液流电池寿命,提高能量效率,减少正负极离子浓度及价态再平衡等运维频次,国内外对全钒液流电池容量衰减抑制进行了大量研究。本文从容量衰减机理和抑制方法角度分析了全钒液流电池容量衰减影响因素,总结了不同应用工况下水和钒离子的迁移、自放电和析气副反应、温度与浓度等对容量衰减影响的研究现状,阐明了容量衰减机理。重点分析了隔膜、电解液相关材料应用工况对容量衰减抑制的影响规律,以及基于流量、充放电制度、活性物质浓度调整等参数的容量衰减抑制技术,展望了基于应用工况的全钒液流电池容量衰减抑制新兴技术,为全钒液流电池运行中的电解液容量保持提供指导依据。
中图分类号:
段永龙, 滑夏, 韩子娇, 谢冰, 胡姝博, 李爱魁. 全钒液流电池容量衰减与抑制技术研究进展[J]. 储能科学与技术, 2025, 14(6): 2540-2554.
Yonglong DUAN, Xia HUA, Zijiao HAN, Bing XIE, Shubo HU, Aikui LI. Research progress on capacity decay and inhibition technology of all-vanadium flow batteries[J]. Energy Storage Science and Technology, 2025, 14(6): 2540-2554.
1 | SKYLLAS-KAZACOS M, RYCHCIK M, ROBINS R G, et al. New all-vanadium redox flow cell[J]. Journal of the Electrochemical Society, 1986, 133(5): 1057-1058. DOI: 10.1149/1.2108706. |
2 | SKYLLAS-KAZACOS M, CAO L Y, KAZACOS M, et al. Vanadium electrolyte studies for the vanadium redox battery-A review[J]. ChemSusChem, 2016, 9(13): 1521-1543. DOI: 10.1002/cssc. 201600102. |
3 | 朱兆武, 张旭堃, 苏慧, 等. 全钒液流电池提高电解液浓度的研究与应用现状[J]. 储能科学与技术, 2022, 11(11): 3439-3446. DOI: 10.19799/j.cnki.2095-4239.2022.0329. |
ZHU Z W, ZHANG X K, SU H, et al. Research and application of increasing electrolyte concentration in all vanadium redox flow battery[J]. Energy Storage Science and Technology, 2022, 11(11): 3439-3446. DOI: 10.19799/j.cnki.2095-4239.2022.0329. | |
4 | 戴纹硕, 郭骞远, 陈向南, 等. 全钒液流电池双极板材料研究进展[J]. 储能科学与技术, 2024, 13(4): 1310-1325. DOI: 10.19799/j.cnki. 2095-4239.2023.0882. |
DAI W S, GUO Q Y, CHEN X N, et al. Research progress of bipolar plate materials for vanadium flow battery[J]. Energy Storage Science and Technology, 2024, 13(4): 1310-1325. DOI: 10.19799/j.cnki.2095-4239.2023.0882. | |
5 | LU M Y, YANG W W, BAI X S, et al. Performance improvement of a vanadium redox flow battery with asymmetric electrode designs[J]. Electrochimica Acta, 2019, 319: 210-226. DOI: 10.1016/j.electacta.2019.06.158. |
6 | 赵丽娜, 肖伟, 刘建国, 等. 全钒液流电池离子传导膜研究进展[J]. 化工新型材料, 2019, 47(5): 227-230. |
ZHAO L N, XIAO W, LIU J G, et al. Research progress of ion conducting membrane in VFB[J]. New Chemical Materials, 2019, 47(5): 227-230. | |
7 | PICHUGOV R, LOKTIONOV P, PUSTOVALOVA A, et al. Restoring capacity and efficiency of vanadium redox flow battery via controlled adjustment of electrolyte composition by electrolysis cell[J]. Journal of Power Sources, 2023, 569: 233013. DOI: 10.1016/j.jpowsour.2023.233013. |
8 | CHEN Y X, BAO J, XU Z J, et al. A hybrid analytical and numerical model for cross-over and performance decay in a unit cell vanadium redox flow battery[J]. Journal of Power Sources, 2023, 578: 233210. DOI: 10.1016/j.jpowsour.2023.233210. |
9 | WEI Z B, BHATTARAI A, ZOU C F, et al. Real-time monitoring of capacity loss for vanadium redox flow battery[J]. Journal of Power Sources, 2018, 390: 261-269. DOI: 10.1016/j.jpowsour. 2018.04.063. |
10 | LOKTIONOV P, PUSTOVALOVA A, PICHUGOV R, et al. Quantifying effect of faradaic imbalance and crossover on capacity fade of vanadium redox flow battery[J]. Electrochimica Acta, 2024, 485: 144047. DOI: 10.1016/j.electacta.2024.144047. |
11 | KHAKI B, DAS P. Voltage loss and capacity fade reduction in vanadium redox battery by electrolyte flow control[J]. Electrochimica Acta, 2022, 405: 139842. DOI: 10.1016/j.electacta. 2022.139842. |
12 | RODBY K E, CARNEY T J, ASHRAF GANDOMI Y, et al. Assessing the levelized cost of vanadium redox flow batteries with capacity fade and rebalancing[J]. Journal of Power Sources, 2020, 460: 227958. DOI: 10.1016/j.jpowsour.2020.227958. |
13 | OREIRO S N, BENTIEN A, SLOTH J, et al. Crossover analysis in a commercial 6 kW/43kAh vanadium redox flow battery utilizing anion exchange membrane[J]. Chemical Engineering Journal, 2024, 490: 151947. DOI: 10.1016/j.cej.2024.151947. |
14 | SUN C X, CHEN J, ZHANG H M, et al. Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery[J]. Journal of Power Sources, 2010, 195(3): 890-897. DOI: 10.1016/j.jpowsour.2009. 08.041. |
15 | XIONG R, XIONG B Y, ZHANG Q Y, et al. Capacity fading model of vanadium redox flow battery considering water molecules migration[J]. International Journal of Green Energy, 2022, 19(15): 1613-1622. DOI: 10.1080/15435075.2021.2015599. |
16 | OH K, MOAZZAM M, GWAK G, et al. Water crossover phenomena in all-vanadium redox flow batteries[J]. Electrochimica Acta, 2019, 297: 101-111. DOI: 10.1016/j.electacta.2018.11.151. |
17 | WANG Y P, MU A L, WANG W Y, et al. A review of capacity decay studies of all-vanadium redox flow batteries: Mechanism and state estimation[J]. ChemSusChem, 2024, 17(14): e202301787. DOI: 10.1002/cssc.202301787. |
18 | LEE J, MUYA J T, CHUNG H, et al. Unraveling V(V)-V(IV)-V(III)-V(II) redox electrochemistry in highly concentrated mixed acidic media for a vanadium redox flow battery: Origin of the parasitic hydrogen evolution reaction[J]. ACS Applied Materials & Interfaces, 2019, 11(45): 42066-42077. DOI: 10.1021/acsami. 9b12676. |
19 | PULESTON T, SERRA M, COSTA-CASTELLÓ R. Vanadium redox flow battery capacity loss mitigation strategy based on a comprehensive analysis of electrolyte imbalance effects[J]. Applied Energy, 2024, 355: 122271. DOI: 10.1016/j.apenergy. 2023.122271. |
20 | JAFARI M, SAKTI A, BOTTERUD A. Optimization of electrolyte rebalancing in vanadium redox flow batteries[J]. IEEE Transactions on Energy Conversion, 2022, 37(1): 748-751. DOI: 10.1109/TEC.2021.3136769. |
21 | POLI N, SCHÄFFER M, TROVÒ A, et al. Novel electrolyte rebalancing method for vanadium redox flow batteries[J]. Chemical Engineering Journal, 2021, 405: 126583. DOI: 10.1016/j.cej. 2020.126583. |
22 | JUNG H, LEE S. A study on capacity and state of charge estimation of VRFB systems using cumulated charge and electrolyte volume under rebalancing conditions[J]. Energies, 2023, 16(5): 2478. DOI: 10.3390/en16052478. |
23 | 葛灵, 刘涛, 张一敏, 等. 硫-磷混合酸全钒电解液设计及电化学性能研究[J]. 中国有色冶金, 2023, 52(5): 68-75. DOI: 10.19612/j.cnki.cn11-5066/tf.2023.05.008. |
GE L, LIU T, ZHANG Y M, et al. Investigations on electrochemical performance of sulfuric-phosphoric mixed acid full vanadium electrolyte[J]. China Nonferrous Metallurgy, 2023, 52(5): 68-75. DOI: 10.19612/j.cnki.cn11-5066/tf.2023.05.008. | |
24 | CHOI C, KIM S, KIM R, et al. A review of vanadium electrolytes for vanadium redox flow batteries[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 263-274. DOI: 10.1016/j.rser.2016. 11.188. |
25 | WANG K, ZHANG Y N, LIU L, et al. Broad temperature adaptability of vanadium redox flow battery-Part 3: The effects of total vanadium concentration and sulfuric acid concentration[J]. Electrochimica Acta, 2018, 259: 11-19. DOI: 10.1016/j.electacta. 2017.10.148. |
26 | TANG A, BAO J, SKYLLAS-KAZACOS M. Thermal modelling of battery configuration and self-discharge reactions in vanadium redox flow battery[J]. Journal of Power Sources, 2012, 216: 489-501. DOI: 10.1016/j.jpowsour.2012.06.052. |
27 | BADRINARAYANAN R, ZHAO J Y, TSENG K J, et al. Extended dynamic model for ion diffusion in all-vanadium redox flow battery including the effects of temperature and bulk electrolyte transfer[J]. Journal of Power Sources, 2014, 270: 576-586. DOI: 10.1016/j.jpowsour.2014.07.128. |
28 | KARRECH A. Large-scale all-climate vanadium batteries[J]. Applied Energy, 2024, 355: 122324. DOI: 10.1016/j.apenergy. 2023.122324. |
29 | 王瑄, 叶强. 全钒液流电池电堆局部供液不足导致副反应加剧的现象[J]. 储能科学与技术, 2022, 11(5): 1455-1467. DOI: 10.19799/j.cnki.2095-4239.2021.0578. |
WANG X, YE Q. The aggravation of side reactions caused by insufficient localized liquid supply in an all-vanadium redox flow battery stack[J]. Energy Storage Science and Technology, 2022, 11(5): 1455-1467. DOI: 10.19799/j.cnki.2095-4239.2021.0578. | |
30 | MA T, HUANG Z B, LI B, et al. Effect of operating conditions on the capacity of vanadium redox flow batteries[J]. Journal of the Electrochemical Society, 2024, 171(6): 060503. DOI: 10.1149/1945-7111/ad510d. |
31 | LUO Q T, LI L Y, NIE Z M, et al. In-situ investigation of vanadium ion transport in redox flow battery[J]. Journal of Power Sources, 2012, 218: 15-20. DOI: 10.1016/j.jpowsour.2012.06.066. |
32 | CECCHETTI M, TOJA F, CASALEGNO A, et al. A comprehensive experimental and modelling approach for the evaluation of cross-over fluxes in vanadium redox flow battery[J]. Journal of Energy Storage, 2023, 68: 107846. DOI: 10.1016/j.est.2023.107846. |
33 | ZAREI-JELYANI M, LOGHAVI M M, BABAIEE M, et al. The significance of charge and discharge current densities in the performance of vanadium redox flow battery[J]. Electrochimica Acta, 2023, 443: 141922. DOI: 10.1016/j.electacta.2023.141922. |
34 | 李君涛, 史小虎, 余龙海, 等. 正负极电解液对钒电池能量衰减的影响研究[J]. 电源技术, 2017, 41(12): 1757-1759. |
LI J T, SHI X H, YU L H, et al. Study on effect of cathode and anode electrolyte on energy attenuation of vanadium battery[J]. Chinese Journal of Power Sources, 2017, 41(12): 1757-1759. | |
35 | CHEN L M, LIU T, ZHANG Y M, et al. Mitigating capacity decay by adding carbohydrate in the negative electrolyte of vanadium redox flow battery[J]. Energies, 2022, 15(7): 2454. DOI: 10.3390/en15072454. |
36 | HOU B X, CUI X M, CHEN Y G. Effect of polyacrylic acid on the thermal stability and electrochemical performance of the positive electrolyte for all-vanadium redox flow battery[J]. Rare Metal Materials and Engineering, 2019, 48(10): 3149-3154. |
37 | YAN L G, LI D, LI S Q, et al. Balancing osmotic pressure of electrolytes for nanoporous membrane vanadium redox flow battery with a draw solute[J]. ACS Applied Materials & Interfaces, 2016, 8(51): 35289-35297. DOI: 10.1021/acsami.6b12068. |
38 | YE J Y, YUAN D, DING M, et al. A cost-effective nafion/lignin composite membrane with low vanadium ion permeation for high performance vanadium redox flow battery[J]. Journal of Power Sources, 2021, 482: 229023. DOI: 10.1016/j.jpowsour.2020.229023. |
39 | JIANG B, WU L T, YU L H, et al. A comparative study of Nafion series membranes for vanadium redox flow batteries[J]. Journal of Membrane Science, 2016, 510: 18-26. DOI: 10.1016/j.memsci. 2016.03.007. |
40 | WANG Z Y, REN J Y, SUN J, et al. The anion conductivity of acid-doped polybenzimidazole membrane and utilization in mitigating the capacity decay of vanadium redox flow battery stacks[J]. Chemical Engineering Journal, 2023, 474: 145621. DOI: 10.1016/j.cej.2023.145621. |
41 | SHI Y, EZE C K, XIONG B Y, et al. Recent development of membrane for vanadium redox flow battery applications: A review[J]. Applied Energy, 2019, 238: 202-224. DOI: 10.1016/j.apenergy. 2018.12.087. |
42 | MA X K, ZHANG H M, SUN C X, et al. An optimal strategy of electrolyte flow rate for vanadium redox flow battery[J]. Journal of Power Sources, 2012, 203: 153-158. DOI: 10.1016/j.jpowsour. 2011.11.036. |
43 | TANG A, BAO J, SKYLLAS-KAZACOS M. Studies on pressure losses and flow rate optimization in vanadium redox flow battery[J]. Journal of Power Sources, 2014, 248: 154-162. DOI: 10.1016/j.jpowsour.2013.09.071. |
44 | KARRECH A, REGENAUER-LIEB K, ABBASSI F. Vanadium flow batteries at variable flow rates[J]. Journal of Energy Storage, 2022, 45: 103623. DOI: 10.1016/j.est.2021.103623. |
45 | SONG Y X, LI X R, XIONG J, et al. Electrolyte transfer mechanism and optimization strategy for vanadium flow batteries adopting a Nafion membrane[J]. Journal of Power Sources, 2020, 449: 227503. DOI: 10.1016/j.jpowsour.2019.227503. |
46 | AGAR E, BENJAMIN A, DENNISON C R, et al. Reducing capacity fade in vanadium redox flow batteries by altering charging and discharging currents[J]. Journal of Power Sources, 2014, 246: 767-774. DOI: 10.1016/j.jpowsour.2013.08.023. |
47 | YANG W W, YAN F Y, QU Z G, et al. Effect of various strategies of soc-dependent operating current on performance of a vanadium redox flow battery[J]. Electrochimica Acta, 2018, 259: 772-782. DOI: 10.1016/j.electacta.2017.10.201. |
48 | HUANG Z B, LIU Y L, XIE X, et al. Experimental validation of side reaction on capacity fade of vanadium redox flow battery[J]. Journal of the Electrochemical Society, 2024, 171(1): 010521. DOI: 10.1149/1945-7111/ad1ec8. |
49 | LU M Y, YANG W W, DENG Y M, et al. Mitigating capacity decay and improving charge-discharge performance of a vanadium redox flow battery with asymmetric operating conditions[J]. Electrochimica Acta, 2019, 309: 283-299. DOI: 10.1016/j.electacta. 2019.04.032. |
[1] | 张红, 李金中, 李鑫, 张媛. 计及SOH的全钒液流电池并联控制策略[J]. 储能科学与技术, 2025, 14(6): 2442-2450. |
[2] | 史小虎, 黄怡馨, 邹涛, 袁依婷. 星形交联剂交联的磺化聚苯并咪唑膜的制备及其在全钒液流电池中的应用[J]. 储能科学与技术, 2025, 14(4): 1377-1385. |
[3] | 叶涛, 王怡君, 唐子龙, 潘国梁. 全钒液流电池电解液容量衰减及草酸恢复研究[J]. 储能科学与技术, 2025, 14(3): 1177-1186. |
[4] | 李跃林, 刘祉妤, 郭森, 刘晓君, 张蓬亮, 王程程, 梁原, 王锐. 全钒液流电池的电极结构研究进展[J]. 储能科学与技术, 2025, 14(2): 601-612. |
[5] | 王泓, 张开悦. 全钒液流电池碳毡电极的热处理活化研究[J]. 储能科学与技术, 2025, 14(2): 488-496. |
[6] | 徐冉, 王宝冬, 王绍亮, 张琦, 张磊, 冯子洋. 杂原子掺杂电极用于全钒液流电池中的研究进展[J]. 储能科学与技术, 2024, 13(6): 1849-1860. |
[7] | 戴纹硕, 郭骞远, 陈向南, 张华民, 马相坤. 全钒液流电池双极板材料研究进展[J]. 储能科学与技术, 2024, 13(4): 1310-1325. |
[8] | 张爱芳, 魏邦达, 李卓昊, 杨洋, 杨添强, 姚俊, 张杰, 刘飞, 李浩秒, 王康丽, 蒋凯. 全钒液流电池建模及SOC在线估计研究进展[J]. 储能科学与技术, 2024, 13(3): 1036-1049. |
[9] | 张宇, 姚尧, 刘睿, 金雷, 薛斐, 周鹏, 熊斌宇. 基于自适应无迹卡尔曼滤波和经济模型预测控制的全钒液流电池SOC/SOP联合估计方法[J]. 储能科学与技术, 2024, 13(11): 4089-4101. |
[10] | 赵瑞瑞, 彭燕秋, 赖学君, 吴志隆, 高杰, 许文成, 王立娜, 丁沁, 方永进, 曹余良. 焦磷酸磷酸铁钠基钠离子电池日历老化容量衰减机理研究[J]. 储能科学与技术, 2024, 13(11): 4124-4132. |
[11] | 朱迪, 赵杨阳, 艾邓鑫, 张利, 周咏. 基于遗传算法的飞轮储能电机多工况效率优化[J]. 储能科学与技术, 2024, 13(10): 3582-3592. |
[12] | 汪红辉, 刘一凡, 储德韧. 不同荷电状态钛酸锂电池高温日历老化研究[J]. 储能科学与技术, 2023, 12(8): 2606-2614. |
[13] | 张宇波, 王有元, 黄洞宁, 王子懿, 陈伟根. 面向变工况条件的锂离子电池寿命退化预测方法[J]. 储能科学与技术, 2023, 12(7): 2238-2245. |
[14] | 郭向伟, 王晨, 陈岗, 许孝卓. 基于RLS的锂电池全工况自适应等效电路模型[J]. 储能科学与技术, 2023, 12(10): 3230-3241. |
[15] | 俎梦杨, 张梦, 李子坤, 黄令. 高镍NCA、NCM及NCMA材料循环容量衰减机理研究[J]. 储能科学与技术, 2023, 12(1): 51-60. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||