储能科学与技术 ›› 2025, Vol. 14 ›› Issue (6): 2540-2554.doi: 10.19799/j.cnki.2095-4239.2025.0001

• 储能测试与评价 • 上一篇    下一篇

全钒液流电池容量衰减与抑制技术研究进展

段永龙1(), 滑夏1, 韩子娇2, 谢冰2, 胡姝博2, 李爱魁1()   

  1. 1.大连理工大学,辽宁 大连 116024
    2.国网辽宁省电力有限公司,辽宁 沈阳 110006
  • 收稿日期:2025-01-02 修回日期:2025-01-22 出版日期:2025-06-28 发布日期:2025-06-27
  • 通讯作者: 李爱魁 E-mail:961750695@qq.com;liaikui@dlut.edu.cn
  • 作者简介:段永龙(2000—),男,硕士研究生,研究方向为液流电池储能技术,E-mail:961750695@qq.com
  • 基金资助:
    国家电网公司总部科技项目(4000-202428085A-1-1-ZN)

Research progress on capacity decay and inhibition technology of all-vanadium flow batteries

Yonglong DUAN1(), Xia HUA1, Zijiao HAN2, Bing XIE2, Shubo HU2, Aikui LI1()   

  1. 1.Dalian University of Technology, Dalian 116024, Liaoning, China
    2.State Grid Liaoning Electric Power Supply Co. , Ltd. , Shenyang 110006, Liaoning, China
  • Received:2025-01-02 Revised:2025-01-22 Online:2025-06-28 Published:2025-06-27
  • Contact: Aikui LI E-mail:961750695@qq.com;liaikui@dlut.edu.cn

摘要:

全钒液流电池具有寿命长、安全性高、能量控制管理简单、功率和容量完全解耦等优点,适用于新型电力系统中新能源发电波动平滑、削峰填谷、稳压调频等应用场景,近年来已经开始规模化推广应用。由于隔膜等关键材料特性、电堆及管道系统结构、电解液成分等全钒液流电池的固有特点,其运行过程中存在容量衰减问题,为保障全钒液流电池寿命,提高能量效率,减少正负极离子浓度及价态再平衡等运维频次,国内外对全钒液流电池容量衰减抑制进行了大量研究。本文从容量衰减机理和抑制方法角度分析了全钒液流电池容量衰减影响因素,总结了不同应用工况下水和钒离子的迁移、自放电和析气副反应、温度与浓度等对容量衰减影响的研究现状,阐明了容量衰减机理。重点分析了隔膜、电解液相关材料应用工况对容量衰减抑制的影响规律,以及基于流量、充放电制度、活性物质浓度调整等参数的容量衰减抑制技术,展望了基于应用工况的全钒液流电池容量衰减抑制新兴技术,为全钒液流电池运行中的电解液容量保持提供指导依据。

关键词: 全钒液流电池, 容量衰减, 抑制技术, 工况

Abstract:

The vanadium redox flow battery (VRFB) offers several advantages, including long service life, high safety, straightforward energy management, and the independent scalability of power and capacity. These characteristics make it well-suited for applications such as mitigating fluctuations in renewable energy generation, peak shaving and filling, and voltage and frequency regulation in modern power systems. In recent years, VRFBs have seen large-scale deployment. However, due to the intrinsic properties of core components—such as membranes, stack and pipeline configurations, and electrolyte composition—capacity decay remains a significant challenge during operation. To extend service life, improve energy efficiency, and reduce the frequency of maintenance tasks such as electrolyte rebalancing and ion concentration adjustment, extensive research has been conducted globally on mitigating capacity fade in VRFBs. This paper analyzes the causes of capacity decay from both mechanistic and technical perspectives, summarizing the state of research on the impacts of water and vanadium ion migration, self-discharge, side reactions, temperature, and concentration under various application conditions. It emphasizes the roles of membranes and electrolyte-related materials in influencing capacity retention, along with strategies that adjust flow rate, charge-discharge protocols, and active species concentrations to suppress capacity loss. Moreover, it reviews emerging technologies tailored to specific application scenarios that aim to inhibit capacity degradation. The insights presented herein provide guidance for maintaining electrolyte performance and overall battery capacity during long-term VRFB operation.

Key words: vanadium flow battery, capacity decay, inhibition technology, operating condition

中图分类号: