储能科学与技术 ›› 2025, Vol. 14 ›› Issue (7): 2575-2589.doi: 10.19799/j.cnki.2095-4239.2025.0241

• 第十三届储能国际峰会暨展览会专辑 • 上一篇    下一篇

锂离子电池阳极危害性析锂原位检测综述

翁雯媛1(), 沈斌2(), 朱建功1(), 汪洋2, 路华鹏2, 何乌利雅苏2, 刘浩男1, 戴海峰1, 魏学哲1   

  1. 1.同济大学汽车学院,上海 201804
    2.沃尔沃汽车技术(上海)有限公司,上海 201804
  • 收稿日期:2025-03-14 修回日期:2025-04-06 出版日期:2025-07-28 发布日期:2025-07-11
  • 通讯作者: 沈斌,朱建功 E-mail:2332933@tongji.edu.cn;bin.shen@volvocars.com;zhujiangong@tongji.edu.cn
  • 作者简介:翁雯媛(2000—),女,硕士研究生,研究锂离子电池健康管理领域,E-mail:2332933@tongji.edu.cn
  • 基金资助:
    国家自然科学基金(52377211);沃尔沃汽车技术(上海)有限公司危害性析锂测试和研究资助项目

Detecting hazardous lithium plating on anodes of lithium-ion batteriesA review of in situ methods

Wenyuan WENG1(), Bin SHEN2(), Jiangong ZHU1(), Yang WANG2, Huapeng LU2, Wuliyasu HE2, Haonan LIU1, Haifeng DAI1, Xuezhe WEI1   

  1. 1.School of Mechanical Engineering, Tongji University, Shanghai 201804, China
    2.Volvo Car Technology (Shanghai) Co. , Ltd. , Shanghai 201804, China
  • Received:2025-03-14 Revised:2025-04-06 Online:2025-07-28 Published:2025-07-11
  • Contact: Bin SHEN, Jiangong ZHU E-mail:2332933@tongji.edu.cn;bin.shen@volvocars.com;zhujiangong@tongji.edu.cn

摘要:

锂离子电池在实现碳中和目标中发挥了重要作用,广泛应用于电动汽车、便携式电子设备和储能系统等领域,然而,析锂现象引发的安全与性能问题也日益凸显。本文系统分析了锂离子电池析锂的形成机理及影响因素,指出电池设计缺陷和极端工况(低温环境、快充和过充)等因素耦合作用下易导致阳极对锂电位低于0V,从而诱发锂离子电池阳极析锂。沉积锂的可逆性变差会导致SEI膜增厚、死锂堆积及锂枝晶生长,造成能量密度降低和容量加速衰减,甚至引发安全问题。针对析锂检测难题,本文从原位检测视角对现有技术进行分类介绍,定量检测方法涵盖差分电压分析、核磁共振波谱等电化学与物理表征技术;定性检测方法包括电化学阻抗谱、厚度和压力检测等。相较于需拆解电池的非原位检测,这些方法为在线、原位检测提供了新思路。本文创新性地从热安全与性能安全两个维度构建析锂安全评估体系,为开发长寿命高安全电池奠定基础。最后展望了多技术融合检测、智能预警系统等未来研究方向,为突破析锂原位检测技术瓶颈提供科学指导。

关键词: 锂离子电池, 析锂, 原位检测, 电池安全, 热失控

Abstract:

Lithium-ion batteries play a pivotal role in achieving carbon neutrality goals through their widespread applications in electric vehicles, portable electronics, and energy storage systems. However, lithium plating—a critical process that occurs at the anode during charging—poses a significant challenge, compromising both safety and performance. This study systematically investigates the formation mechanisms and influencing factors of lithium plating, revealing that the synergistic effects of battery design flaws and extreme operating conditions (such as a low-temperature environment, fast charging, and overcharging) can drive the anode potential below 0 V vs. Li/Li+, triggering the deposition of metallic lithium. The irreversibility of lithium deposition leads to three critical consequences: continuous thickening of the solid electrolyte interphase (SEI) layer, accumulation of “dead lithium”, and dendritic lithium growth. These effects collectively contribute to capacity degradation and thermal runaway risks.To address the challenges in detecting lithium deposition, this study provides a comprehensive classification and critical review of existing technologies from the perspective of in situ detection. Quantitative detection methodologies include electrochemical characterization techniques (e.g., differential voltage analysis, differential voltage relaxation analysis, incremental and capacity analysis and physical characterization approaches (e.g., nuclear magnetic resonance spectroscopy and X-ray technology). Qualitative detection strategies involve electrochemical impedance spectroscopy (EIS) and thickness or pressure monitoring systems. Compared to postmortem analysis requiring battery disassembly, these advanced methods offer novel insights for real-time monitoring applications.This study establishes an innovative dual-dimensional safety assessment framework encompassing thermal safety and performance safety, with the former focusing on heat generation characteristics and thermal stability thresholds during lithium plating and the latter on quantifying capacity fade rates and impedance growth patterns. This systematic approach provides a theoretical foundation for developing high-safety, long-cycle-life batteries.Finally, to address the shortcomings in current in situ lithium plating detection, the following recommendations are made: ① establishing a systematic definition of battery safety standards and correlating lithium plating detection with thermal and performance safety; ② combining electrochemical detection with big data to extract and fuse useful features for online safety diagnosis; ③ developing innovative in situ quantitative methods for visual monitoring and quantifying complex internal reactions, and ④ providing scientific guidance to overcome the bottlenecks in in situ lithium plating detection technology.

Key words: lithium-ion battery, lithium plating, in-situ detection, battery safety, thermal runaway

中图分类号: