[1] |
任丽彬,许寒,宗军,等. 大规模储能技术及应用的研究进展[J]. 电源技术, 2018, 42(1): 139-42.
|
|
REN L, XU H, ZONG J, et al. Research progress of large-scale energy storage technologies and applications [J]. Chinese Journal of Power Sources, 2018, 42(1): 139-42.
|
[2] |
薛皓白, 张新敬, 陈海生, 等. 微型压缩空气储能系统释能过程分析[J]. 工程热物理学报, 2014, 35(10): 1923-1929.
|
|
XUE H B, ZHANG X J, CHEN H S, et al. Analysis of energy release process of micro-compressed air energy storage systems[J]. Journal of Engineering Thermophysics, 2014, 35(10): 1923-1929.
|
[3] |
李连生, 杨启超, 赵远扬. 微小型压缩空气储能系统研究[J]. 流体机械, 2014, 42(3): 24-27. DOI: 10.3969/j.issn.1005-0329.2014. 03.006.
|
|
LI L S, YANG Q C, ZHAO Y Y. Research on micro-small scale of compressed air energy storage system[J]. Fluid Machinery, 2014, 42(3): 24-27. DOI: 10.3969/j.issn.1005-0329.2014.03.006.
|
[4] |
CHEN L J, ZHENG T W, MEI S W, et al. Review and prospect of compressed air energy storage system[J]. Journal of Modern Power Systems and Clean Energy, 2016, 4(4): 529-541. DOI: 10.1007/s40565-016-0240-5.
|
[5] |
BAZDAR E, SAMETI M, NASIRI F, et al. Compressed air energy storage in integrated energy systems: A review[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112701. DOI: 10. 1016/j.rser.2022.112701.
|
[6] |
BUDT M, WOLF D, SPAN R, et al. A review on compressed air energy storage: Basic principles, past milestones and recent developments[J]. Applied Energy, 2016, 170: 250-268. DOI: 10. 1016/j.apenergy.2016.02.108.
|
[7] |
MOTTAGHIZADEH P, FARDADI M, JABBARI F, et al. Thermodynamic and dynamic analysis off a wind-powered off-grid industrial building integrated with solid oxide fuel cell and electrolyzer for energy management and storage[J]. Journal of Electrochemical Energy Conversion and Storage. 2021, DOI:10.1115/1.4052856.
|
[8] |
TAYEFEH M. An innovative rearrangement and comprehensive comparison of the combination of compressed air energy storage (CAES) with multi stage flash (MSF) desalination and multi effect distillation (MED) systems[J]. Journal of Energy Storage, 2022, 52: 105025. DOI: 10.1016/j.est.2022.105025.
|
[9] |
JANNELLI E, MINUTILLO M, LUBRANO LAVADERA A, et al. A small-scale CAES (compressed air energy storage) system for stand-alone renewable energy power plant for a radio base station: A sizing-design methodology[J]. Energy, 2014, 78: 313-322. DOI: 10.1016/j.energy.2014.10.016.
|
[10] |
YAO E R, WANG H R, WANG L G, et al. Thermo-economic optimization of a combined cooling, heating and power system based on small-scale compressed air energy storage[J]. Energy Conversion and Management, 2016, 118: 377-386. DOI: 10.1016/j.enconman.2016.03.087.
|
[11] |
郭欢,徐玉杰,张新敬,等. 蓄热式压缩空气储能系统变工况特性 [J]. 中国电机工程学报, 2019, 39(5): 1366-1377.
|
|
GUO H, XU Y, ZHANG X, et al. Off-design Performance of compressed air energy storage system with thermal storage [J]. Proceedings of the CSEE, 2019, 39(5): 1366-1377.
|
[12] |
刘扬波, 陈俊生, 李全皎, 等. 海上风电水下压缩空气储能系统运行及变工况分析[J]. 南方电网技术, 2022, 16(4): 50-59. DOI: 10.13648/j. cnki.issn1674-0629.2022.04.006.
|
|
LIU Y B, CHEN J S, LI Q J, et al. Operation and varying load analysis of offshore wind-underwater compressed air energy storage system[J]. Southern Power System Technology, 2022, 16(4): 50-59. DOI: 10.13648/j.cnki.issn1674-0629.2022.04.006.
|
[13] |
陈辉, 李文, 盛勇, 等. CAES释能过程多工况动态仿真及效率分析 [J]. 动力工程学报, 2023, 43(7): 869-876+92.
|
|
CHEN H, LI W, SHENG Y, et al. Dynamic simulation and efficiency analysis of energy release process in compressed air energy storage under multi conditions [J]. Journal of Chinese Society of Power Engineering, 2023, 43(7): 869-876+92
|
[14] |
LI P, YANG C, SUN L, et al. Dynamic characteristics and operation strategy of the discharge process in compressed air energy storage systems for applications in power systems[J]. International Journal of Energy Research, 2020, 44(8): 6363-6382. DOI: 10.1002/er.5362.
|
[15] |
LI Y W, MIAO S H, LUO X, et al. Dynamic modelling and techno-economic analysis of adiabatic compressed air energy storage for emergency back-up power in supporting microgrid[J]. Applied Energy, 2020, 261: 114448. DOI: 10.1016/j.apenergy.2019.114448.
|
[16] |
SALVINI C, MARIOTTI P, GIOVANNELLI A. Compression and air storage systems for small size CAES plants: Design and off-design analysis[J]. Energy Procedia, 2017, 107: 369-376. DOI: 10.1016/j.egypro.2016.12.178.
|
[17] |
SUBRAMANIYAN C, KALIDASAN B, BHUVANESH N, et al. Second law analysis on performance of double stage reciprocating air compressor with inter cooler[J]. Materials Today: Proceedings, 2021, 45: 652-657. DOI: 10.1016/j.matpr.2020.02.727.
|
[18] |
HEIDARI M, MORTAZAVI M, RUFER A. Design, modeling and experimental validation of a novel finned reciprocating compressor for Isothermal Compressed Air Energy Storage applications[J]. Energy, 2017, 140: 1252-1266. DOI: 10.1016/j.energy.2017.09.031.
|
[19] |
KIM S K, PILIDIS P, YIN J F. Gas turbine dynamic simulation using simulink®[C]//SAE Technical Paper Series. SAE International, 2000, DOI: 10.4271/2000-01-3647.
|
[20] |
MUCCI S, BISCHI A, BRIOLA S, et al. Small-scale adiabatic compressed air energy storage: Control strategy analysis via dynamic modelling[J]. Energy Conversion and Management, 2021, 243: 114358. DOI: 10.1016/j.enconman.2021.114358.
|
[21] |
HERNANDEZ-CARRILLO I, WOOD C, LIU H. Development of a 1000 W organic Rankine cycle micro-turbine-generator using polymeric structural materials and its performance test with compressed air[J]. Energy Conversion and Management, 2019, 190: 105-120. DOI: 10.1016/j.enconman.2019.03.092.
|
[22] |
DAABO A M, MAHMOUD S, AL-DADAH R K, et al. Numerical analysis of small scale axial and radial turbines for solar powered Brayton cycle application[J]. Applied Thermal Engineering, 2017, 120: 672-693. DOI: 10.1016/j.applthermaleng.2017.03.125.
|
[23] |
RAHBAR K, MAHMOUD S, AL-DADAH R K, et al. Development and experimental study of a small-scale compressed air radial inflow turbine for distributed power generation[J]. Applied Thermal Engineering, 2017, 116: 549-583. DOI: 10.1016/j.applthermaleng. 2017.01.100.
|
[24] |
GAUDET S R, DONALD GAUTHIER J E. A simple sub-idle component map extrapolation method[C]//Volume 1: Turbo Expo 2007. May 14-17, 2007. Montreal, Canada. ASMEDC, 2007: 29-37. DOI: 10.1115/gt2007-27193.
|
[25] |
DIB G, HABERSCHILL P, RULLIèRE R, et al. Thermodynamic simulation of a micro advanced adiabatic compressed air energy storage for building application [J]. Applied Energy, 2020, 260
|
[26] |
GUO H, XU Y J, ZHU Y L, et al. Unsteady characteristics of compressed air energy storage systems with thermal storage from thermodynamic perspective[J]. Energy, 2022, 244: 122969. DOI: 10.1016/j.energy.2021.122969.
|
[27] |
韩晓光, 曲文浩, 董瑜, 等. 基于Simulink的燃气轮机动态仿真模型[J]. 航空发动机, 2010, 36(3): 20-22, 25. DOI: 10.3969/j.issn.1672-3147.2010.03.005.
|
|
HAN X G, QU W H, DONG Y, et al. Dynamic simulation model of gas turbine based on Simulink[J]. Aeroengine, 2010, 36(3): 20-22, 25. DOI: 10.3969/j.issn.1672-3147.2010.03.005.
|
[28] |
CASTELLANI B, MORINI E, NASTASI B, et al. Small-scale compressed air energy storage application for renewable energy integration in a listed building[J]. Energies, 2018, 11(7): 1921. DOI: 10.3390/en11071921.
|
[29] |
HUANG J J, XU Y J, GUO H, et al. Dynamic performance and control scheme of variable-speed compressed air energy storage[J]. Applied Energy, 2022, 325: 119338. DOI: 10.1016/j.apenergy. 2022.119338.
|