[1] |
刘坚. 新型储能产业发展关键问题及政策机制[J]. 储能科学与技术, 2025, 14(7): 2625-2634. DOI: 10.19799/j.cnki.2095-4239.2025.0096.
|
|
LIU J. Key issues and policy mechanisms for developing new energy storage in China[J]. Energy Storage Science and Technology, 2025, 14(7): 2625-2634. DOI: 10.19799/j.cnki.2095-4239.2025.0096.
|
[2] |
汤匀, 岳芳, 王莉晓, 等. 全球新型储能技术发展态势分析[J]. 全球能源互联网, 2024, 7(2): 228-240. DOI: 10.19705/j.cnki.issn2096-5125.2024.02.012.
|
|
TANG Y, YUE F, WANG L X, et al. International development trend analysis of new energy storage technologies[J]. Journal of Global Energy Interconnection, 2024, 7(2): 228-240. DOI: 10.19705/j.cnki.issn2096-5125.2024.02.012.
|
[3] |
陈海生, 李泓, 徐玉杰, 等. 2023年中国储能技术研究进展[J]. 储能科学与技术, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441.
|
|
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2023[J]. Energy Storage Science and Technology, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441.
|
[4] |
张京业, 林玉鑫, 邱清泉, 等. 基于斜坡和山体的重力储能技术研究进展[J]. 储能科学与技术, 2024, 13(3): 924-933. DOI: 10.19799/j.cnki.2095-4239.2023.0667.
|
|
ZHANG J Y, LIN Y X, QIU Q Q, et al. Gravity energy storage technology based on slopes and mountains[J]. Energy Storage Science and Technology, 2024, 13(3): 924-933. DOI: 10.19799/j.cnki.2095-4239.2023.0667.
|
[5] |
LI F F, XIE J Z, FAN Y F, et al. Potential of different forms of gravity energy storage[J]. Sustainable Energy Technologies and Assessments, 2024, 64: 103728. DOI: 10.1016/j.seta.2024.103728.
|
[6] |
TONG W X, LU Z G, SUN J F, et al. Solid gravity energy storage technology: Classification and comparison[J]. Energy Reports, 2022, 8: 926-934. DOI: 10.1016/j.egyr.2022.10.286.
|
[7] |
聂亚惠, 周学志, 郭丁彰, 等. 铁轨重力储能系统关键影响因素及其与风电场的耦合研究[J]. 储能科学与技术, 2024, 13(6): 1900-1910. DOI: 10.19799/j.cnki.2095-4239.2023.0962.
|
|
NIE Y H, ZHOU X Z, GUO D Z, et al. Study on key influencing factors of the rail gravity energy storage system and its coupling with wind farms[J]. Energy Storage Science and Technology, 2024, 13(6): 1900-1910. DOI: 10.19799/j.cnki.2095-4239.2023.0962.
|
[8] |
秦婷婷, 周学志, 郭丁彰, 等. 铁轨重力储能系统效率影响因素研究[J]. 储能科学与技术, 2023, 12(3): 835-845. DOI: 10.19799/j.cnki.2095-4239.2022.0634.
|
|
QIN T T, ZHOU X Z, GUO D Z, et al. Study on factors influencing rail gravity energy storage system efficiency[J]. Energy Storage Science and Technology, 2023, 12(3): 835-845. DOI: 10.19799/j.cnki.2095-4239.2022.0634.
|
[9] |
BOTHA C D, KAMPER M J. Capability study of dry gravity energy storage[J]. Journal of Energy Storage, 2019, 23: 159-174. DOI: 10.1016/j.est.2019.03.015.
|
[10] |
MORSTYN T, CHILCOTT M, MCCULLOCH M D. Gravity energy storage with suspended weights for abandoned mine shafts[J]. Applied Energy, 2019, 239: 201-206. DOI: 10.1016/j.apenergy. 2019.01.226.
|
[11] |
KROPOTIN P, MARCHUK I. On efficiency of load-lifting rope-traction mechanisms used in gravity energy storage systems[J]. Journal of Energy Storage, 2023, 58: 106393. DOI: 10.1016/j.est.2022.106393.
|
[12] |
吕刚. 直线电机在轨道交通中的应用与关键技术综述[J]. 中国电机工程学报, 2020, 40(17): 5665-5675. DOI: 10.13334/j.0258-8013.pcsee.200488.
|
|
LYU G. Review of the application and key technology in the linear motor for the rail transit[J]. Proceedings of the CSEE, 2020, 40(17): 5665-5675. DOI: 10.13334/j.0258-8013.pcsee.200488.
|
[13] |
EGUREN I, ALMANDOZ G, EGEA A, et al. Linear machines for long stroke applications—a review[J]. IEEE Access, 2019, 8: 3960-3979.
|
[14] |
闫文举, 王洋, 孙芯竹, 等. 基于直线电机的废弃矿井重力储能系统研究进展与关键技术[J]. 储能科学与技术, 2025, 14(1): 255-268. DOI: 10.19799/j.cnki.2095-4239.2024.0623.
|
|
YAN W J, WANG Y, SUN X Z, et al. Research progress and key technology of abandoned mine gravity energy storage system based on linear motor[J]. Energy Storage Science and Technology, 2025, 14(1): 255-268. DOI: 10.19799/j.cnki.2095-4239.2024.0623.
|
[15] |
BOTHA C D, KAMPER M J, WANG R J. Design optimisation and cost analysis of linear vernier electric machine-based gravity energy storage systems[J]. Journal of Energy Storage, 2021, 44: 103397. DOI: 10.1016/j.est.2021.103397.
|
[16] |
MUGYEMA M, BOTHA C D, KAMPER M J, et al. Levelised cost of storage comparison of energy storage systems for use in primary response application[J]. Journal of Energy Storage, 2023, 59: 106573. DOI: 10.1016/j.est.2022.106573.
|
[17] |
MUGYEMA M, KAMPER M J, WANG R J, et al. Performance and cost comparison of drive technologies for a linear electric machine gravity energy storage system[J]. IEEE Access, 2024, 12: 46953-46966.
|
[18] |
何颖源, 陈永翀, 刘勇, 等. 储能的度电成本和里程成本分析[J]. 电工电能新技术, 2019, 38(9): 1-10. DOI: 10.12067/ATEEE1907045.
|
|
HE Y Y, CHEN Y C, LIU Y, et al. Analysis of cost per kilowatt-hour and cost per mileage for energy storage technologies[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38(9): 1-10. DOI: 10.12067/ATEEE1907045.
|
[19] |
闫俊辰, JOHN C CRITTENDEN. 一种基于"能量" 成本的储能技术评价新方法[J]. 储能科学与技术, 2019, 8(2): 269-275. DOI: 10.12028/j.issn.2095-4239.2018.0175.
|
|
YAN J C, CRITTENDEN J. An evaluation method of energy storage technologies based on energetic costs[J]. Energy Storage Science and Technology, 2019, 8(2): 269-275. DOI: 10.12028/j.issn.2095-4239.2018.0175.
|
[20] |
闫文举, 杨宏伟, 孙芯竹, 等. 废旧矿井用直线电机重力储能装置及其多储能块协同控制方法: CN117639015A[P]. 2024-03-01.
|
|
YAN W J, YANG H W, SUN X Z, et al. Linear motor gravity energy storage device for waste mine and multi-energy-storage-block cooperative control method of linear motor gravity energy storage device: CN117639015A[P]. 2024-03-01.
|
[21] |
李震, 陈巨龙, 李文林, 等. 提升斜坡式重力储能AGC性能的混合储能优化运行方法[J]. 储能科学与技术, 2024, 13(8): 2761-2771. DOI: 10.19799/j.cnki.2095-4239.2024.0211.
|
|
LI Z, CHEN J L, LI W L, et al. Optimized operation of hybrid energy storage to enhance the performance of AGC with sloped gravity storage[J]. Energy Storage Science and Technology, 2024, 13(8): 2761-2771. DOI: 10.19799/j.cnki.2095-4239.2024.0211.
|
[22] |
赵永明, 邱清泉, 聂子攀, 等. 重力/飞轮综合储能电机变流并网系统设计及运行特性[J]. 储能科学与技术, 2022, 11(12): 3895-3905. DOI: 10.19799/j.cnki.2095-4239.2022.0386.
|
|
ZHAO Y M, QIU Q Q, NIE Z P, et al. Design and operating characteristics of a grid-connected motor-converting system for gravity/flywheel integrated energy storage[J]. Energy Storage Science and Technology, 2022, 11(12): 3895-3905. DOI: 10. 19799/j.cnki.2095-4239.2022.0386.
|