储能科学与技术 ›› 2025, Vol. 14 ›› Issue (8): 3078-3089.doi: 10.19799/j.cnki.2095-4239.2025.0535
• 短时高频高功率储能专辑 • 上一篇
徐彩莹(), 唐毓振, 李秋雨, 杨浩岳, 陈洋, 杨恒昭(
)
收稿日期:
2025-06-06
修回日期:
2025-07-23
出版日期:
2025-08-28
发布日期:
2025-08-18
通讯作者:
杨恒昭
E-mail:xucy12023@shanghaitech.edu.cn;hzyang@shanghaitech.edu.cn
作者简介:
徐彩莹(2002—),女,硕士研究生,研究方向为超级电容健康状态估计与寿命预测,E-mail:xucy12023@shanghaitech.edu.cn;
Caiying XU(), Yuzhen TANG, Qiuyu LI, Haoyue YANG, Yang CHEN, Hengzhao YANG(
)
Received:
2025-06-06
Revised:
2025-07-23
Online:
2025-08-28
Published:
2025-08-18
Contact:
Hengzhao YANG
E-mail:xucy12023@shanghaitech.edu.cn;hzyang@shanghaitech.edu.cn
摘要:
随着可再生能源在电力系统中的渗透率不断提高,其间歇性和不确定性对电力系统的频率稳定性产生了深刻影响。作为一种新型储能技术,超级电容具有功率密度高、循环寿命长、工作温区宽等优点,可作为提升电力系统调频能力的重要手段。本文概述了用于电力系统调频的超级电容储能系统。首先,介绍了电力系统的调频需求以及使用超级电容储能系统进行调频的优势。其次,整理了用于电力系统调频的超级电容储能系统的控制策略和容量配置方法。其中,控制策略涵盖了下垂控制等经典控制方法和模型预测控制等先进控制策略。容量配置方法归纳了基于规则的方法和基于优化的方法。然后,梳理了使用超级电容储能系统进行电力系统调频的工程案例,着重分析了以“超级电容+锂离子电池”为代表的混合储能系统的系统架构、运行模式、经济性等。最后,对超级电容调频技术进行了展望,给出了目前学术界和产业界尚需加强合作、协同攻关的建议以推动该技术的大规模应用和高质量发展。
中图分类号:
徐彩莹, 唐毓振, 李秋雨, 杨浩岳, 陈洋, 杨恒昭. 用于电力系统调频的超级电容储能系统[J]. 储能科学与技术, 2025, 14(8): 3078-3089.
Caiying XU, Yuzhen TANG, Qiuyu LI, Haoyue YANG, Yang CHEN, Hengzhao YANG. Supercapacitor energy storage systems for frequency regulation applications in power systems[J]. Energy Storage Science and Technology, 2025, 14(8): 3078-3089.
表3
超级电容调频项目"
状态 | 选址 | 规模构成/相关装置 |
---|---|---|
2022年10月投运 | 内蒙古乌兰察布[ | 0.5 MW/1 MWh锂电池+1 MW/0.1 MWh超级电容 |
2023年4月投运 | 福建福州[ | 15 MW锂电池+5 MW超级电容 |
2023年10月投运 | 广东珠海[ | 16 MW/8 MWh锂电池+4 MW/10 min超级电容 |
2023年10月投运 | 河北[ | — |
2024年4月投运 | 山东滨州[ | 2 MW/30 s超级电容(9 MW/5 MWh混合储能调频项目) |
2024年9月交付 | 山东莱州[ | 244 MW/488 MWh锂电池+4 MW/30 s超级电容 |
2024年10月投运 | 福建福清[ | 超级电容双驱电动变桨控制系统 |
2024年10月投运 | 西藏拉萨、日喀则[ | — |
2024年12月投运 | 山西晋中[ | 10 MW/10 MWh锂电池+10 MW/6 min超级电容 |
2025年1月投运 | 海南文昌[ | 1 MW/30 s超级电容(100 MW/200 MWh储能示范项目) |
2025年2月投运 | 内蒙古呼伦贝尔[ | 16 MW/10 min超级电容 |
2025年3月投运 | 宁夏银川[ | 10 MW/20 MWh锂电池+200 kW/400 kWh钠离子电池+1 MW/5 min 超级电容 |
2025年4月投运 | 湖北武汉[ | 14 MW锂电池+6 MW超级电容 |
2025年5月投运 | 陕西铜川[ | 15 MW锂电池+5 MW/6 min超级电容 |
2025年5月投运 | 山东烟台[ | 120 MW/240MWh锂电池+2 MW/0.2 MWh超级电容 |
建设中 | 甘肃嘉峪关[ | 475 MW/1000 MWh锂电池+25 MW/60 s超级电容 |
建设中 | 安徽宿州[ | 200 MW/400 MWh锂电池+20 MW/30 s超级电容 |
建设中 | 浙江杭州[ | 2 MW超级电容+2 MW飞轮储能系统 |
建设中 | 山东德州[ | 200 MW/400 MWh锂电池+6 MW/15 s超级电容 |
建设中 | 辽宁沈阳[ | 10 MW/10 min超级电容 |
建设中 | 陕西渭南[ | 5 MW/5 MWh锂电池+5 MW/0.5 MWh超级电容 |
招标中 | 福建宁德[ | 60 MWh锂电池+3 MW超级电容 |
招标中 | 广州珠江[ | 24 MW/48 MWh锂电池+2 MW/5 min超级电容 |
招标中 | 山西襄垣[ | 32.5 MW/130 MWh锂电池+10 MW/0.083 MWh超级电容 |
招标中 | 四川成都[ | 100 MW/200MWh锂电池+2.5 MW/0.04 MWh超级电容 |
[1] | AKRAM U, NADARAJAH M, SHAH R, et al. A review on rapid responsive energy storage technologies for frequency regulation in modern power systems[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109626. DOI: 10.1016/j.rser.2019.109626. |
[2] | SHIM J W, VERBIČ G, ZHANG N, et al. Harmonious integration of faster-acting energy storage systems into frequency control reserves in power grid with high renewable generation[J]. IEEE Transactions on Power Systems, 2018, 33(6): 6193-6205. DOI: 10.1109/TPWRS.2018.2836157. |
[3] | LIU D, ZHANG X, TSE C K. Effects of high level of penetration of renewable energy sources on cascading failure of modern power systems[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2022, 12(1): 98-106. DOI: 10.1109/JETCAS.2022.3147487. |
[4] | YANG Y, PENG J C, YE C J, et al. A criterion and stochastic unit commitment towards frequency resilience of power systems[J]. IEEE Transactions on Power Systems, 2021, 37(1): 640-652. DOI: 10.1109/TPWRS.2021.3095180. |
[5] | MAGDY G, MOHAMED E A, SHABIB G, et al. Microgrid dynamic security considering high penetration of renewable energy[J]. Protection and Control of Modern Power Systems, 2018, 3(3): 1-11. DOI: 10.1186/S41601-018-0093-1. |
[6] | YAO Y Y, LIU W J, JAIN R, et al. Quantitative metrics for grid resilience evaluation and optimization[J]. IEEE Transactions on Sustainable Energy, 2022, 14(2): 1244-1258. DOI: 10.1109/TSTE.2022.3230019. |
[7] | 吴田, 林闽城, 海浩, 等. 面向一次调频的镍氢电池系统开发[J]. 储能科学与技术, 2022, 11(7): 2213-2221. DOI: 10.19799/j.cnki.2095-4239.2022.0140. |
WU T, LIN M C, HAI H, et al. Development of high-power Ni-MH battery system for primary frequency modulation[J]. Energy Storage Science and Technology, 2022, 11(7): 2213-2221. DOI: 10.19799/j.cnki.2095-4239.2022.0140. | |
[8] | GOLPÎRA H, MARINESCU B. Enhanced frequency regulation scheme: An online paradigm for dynamic virtual power plant integration[J]. IEEE Transactions on Power Systems, 2024, 39(6): 7227-7239. DOI: 10.1109/TPWRS.2024.3368796. |
[9] | ZHAO C, SUN D, ZHANG X, et al. A two-stage power distribution scheme of multiple wind farms participating in primary frequency regulation[J]. IEEE Transactions on Power Systems, 2022, 38(6): 5009-5021. DOI: 10.1109/TPWRS.2022.3224971. |
[10] | HOSSAIN M B, ISLAM M R, MUTTAQI K M, et al. Power system dynamic performance analysis based on frequency control by proton exchange membrane electrolyzers[J]. IEEE Transactions on Industry Applications, 2023, 59(4): 4998-5008. DOI: 10.1109/TIA.2023.3257141. |
[11] | ZHANG F, HU Z C, MENG K, et al. HESS sizing methodology for an existing thermal generator for the promotion of AGC response ability[J]. IEEE Transactions on Sustainable Energy, 2020, 11(2): 608-617. DOI: 10.1109/TSTE.2019.2898998. |
[12] | ZHANG J H, WANG Y Y, ZHOU G P, et al. Integrating physical and data-driven system frequency response modelling for wind-PV-thermal power systems[J]. IEEE Transactions on Power Systems, 2024, 39(1): 217-228. DOI: 10.1109/TPWRS.2023. 3242832. |
[13] | LIU Y K, TANG Z, WU L. On secured spinning reserve deployment of energy-limited resources against contingencies[J]. IEEE Transactions on Power Systems, 2021, 37(1): 518-529. DOI: 10.1109/TPWRS.2021.3085709. |
[14] | LIAO Y W, YANG W J, WANG Z C, et al. Mechanism of primary frequency regulation for battery hybridization in hydropower plant[J]. CSEE Journal of Power and Energy Systems, 2024, 10(5): 2127-2137. DOI: 10.17775/CSEEJPES.2022.06420. |
[15] | MARTÍNEZ CESEÑA E A, ZHOU Y T, MELCHOR GUTIERREZ J N, et al. Quantifying the impacts of modelling assumptions on accuracy and computational efficiency for integrated water-energy system simulations under uncertain climate[J]. IEEE Transactions on Sustainable Energy, 2022, 13(3): 1370-1382. DOI: 10.1109/TSTE.2022.3155073. |
[16] | WANG C, JU P, WAN C, et al. Resilience-based coordinated scheduling of cascaded hydro power with sequential heavy precipitation[J]. IEEE Transactions on Sustainable Energy, 2023, 14(2): 1299-1311. DOI: 10.1109/TSTE.2022.3205688. |
[17] | LIU Y K, WU L, YANG Y F, et al. Secured reserve scheduling of pumped-storage hydropower plants in ISO day-ahead market[J]. IEEE Transactions on Power Systems, 2021, 36(6): 5722-5733. DOI: 10.1109/TPWRS.2021.3077588. |
[18] | 乔天舒, 梁双印, 郭鹏, 等. 飞轮储能辅助抽水蓄能机组一次调频仿真研究[J]. 太阳能学报, 2024, 45(11): 619-626. DOI: 10.19912/j.0254-0096.tynxb.2023-1071. |
QIAO T S, LIANG S Y, GUO P, et al. Simulation study on primary frequency regulation of pumped storage unit assisted by flywheel energy storage[J]. Acta Energiae Solaris Sinica, 2024, 45(11): 619-626. DOI: 10.19912/j.0254-0096.tynxb.2023-1071. | |
[19] | 陈海生, 李泓, 徐玉杰, 等. 2024年中国储能技术研究进展[J]. 储能科学与技术, 2025, 14(6): 2149-2192. DOI: 10.19799/j.cnki.2095-4239.2025.0553. |
CHEN H S, LI H, XU Y J, et al. Research progress on China's energy storage technology in 2024[J]. Energy Storage Science and Technology, 2025, 14(6): 2149-2192. DOI: 10.19799/j.cnki.2095-4239.2025.0553. | |
[20] | CALERO F, CAÑIZARES C A, BHATTACHARYA K, et al. A review of modeling and applications of energy storage systems in power grids[J]. Proceedings of the IEEE, 2023, 111(7): 806-831. DOI: 10.1109/JPROC.2022.3158607. |
[21] | XUE S W, ZENG S M, SONG Y, et al. Adaptive secondary frequency regulation strategy for energy storage based on dynamic primary frequency regulation[J]. IEEE Transactions on Power Delivery, 2024, 39(6): 3503-3513. DOI: 10.1109/TPWRD. 2024.3485121. |
[22] | 王雅军, 程杨帆, 聂强, 等. 兼顾超低频振荡抑制和调频性能的自动发电控制参数优化[J]. 科学技术与工程, 2022, 22(34): 15163-15170. DOI: 10.3969/j.issn.1671-1815.2022.34.022. |
WANG Y J, CHENG Y F, NIE Q, et al. Parameter optimization of automatic generation control (AGC) system considering ultra-low frequency oscillation suppression and the secondary frequency regulation performance[J]. Science Technology and Engineering, 2022, 22(34): 15163-15170. DOI: 10.3969/j.issn.1671-1815. 2022.34.022. | |
[23] | GUAN M Y. Scheduled power control and autonomous energy control of grid-connected energy storage system (ESS) with virtual synchronous generator and primary frequency regulation capabilities[J]. IEEE Transactions on Power Systems, 2022, 37(2): 942-954. DOI: 10.1109/TPWRS.2021.3105940. |
[24] | DOENGES K, EGIDO I, SIGRIST L, et al. Improving AGC performance in power systems with regulation response accuracy margins using battery energy storage system (BESS)[J]. IEEE Transactions on Power Systems, 2020, 35(4): 2816-2825. DOI: 10.1109/TPWRS.2019.2960450. |
[25] | XIE X R, GUO Y H, WANG B, et al. Improving AGC performance of coal-fueled thermal generators using multi-MW scale BESS: A practical application[J]. IEEE Transactions on Smart Grid, 2018, 9(3): 1769-1777. DOI: 10.1109/TSG.2016.2599579. |
[26] | LI X J, WANG S X. Energy management and operational control methods for grid battery energy storage systems[J]. CSEE Journal of Power and Energy Systems, 2019, 7(5): 1026-1040. DOI: 10.17775/CSEEJPES.2019.00160. |
[27] | GUO Z J, WEI W, SHAHIDEHPOUR M, et al. Two-timescale dynamic energy and reserve dispatch with wind power and energy storage[J]. IEEE Transactions on Sustainable Energy, 2023, 14(1): 490-503. DOI: 10.1109/TSTE.2022.3217173. |
[28] | MITRA J, NGUYEN N. Grid-scale virtual energy storage to advance renewable energy penetration[J]. IEEE Transactions on Industry Applications, 2022, 58(6): 7952-7965. DOI: 10.1109/TIA.2022.3202515. |
[29] | MA Q L, WEI W, MEI S W. A two-timescale operation strategy for battery storage in joint frequency and energy markets[J]. IEEE Transactions on Energy Markets, Policy and Regulation, 2024, 2(2): 200-213. DOI: 10.1109/TEMPR.2023.3324920. |
[30] | 刘继春, 刘可欣, 柯贤波, 等. 新型电力系统下储能参与电能量-惯量-一次调频多市场交易方法[J]. 电网技术, 2025, 49(3): 1018-1031. DOI: 10.13335/j.1000-3673.pst.2024.1216. |
LIU J C, LIU K X, KE X B, et al. Participation of energy storage in electric energy-inertia-primary frequency regulation multi-market trading method under a new power system[J]. Power System Technology, 2025, 49(3): 1018-1031. DOI: 10.13335/j.1000-3673.pst.2024.1216. | |
[31] | DISSANAYAKE K, KULARATNA-ABEYWARDANA D. A review of supercapacitors: Materials, technology, challenges, and renewable energy applications[J]. Journal of Energy Storage, 2024, 96: 112563. DOI: 10.1016/j.est.2024.112563. |
[32] | HE X Y, ZHANG X L. A comprehensive review of supercapacitors: Properties, electrodes, electrolytes and thermal management systems based on phase change materials[J]. Journal of Energy Storage, 2022, 56: 106023. DOI: 10.1016/j.est.2022.106023. |
[33] | YANG H Z. A comparative study of supercapacitor capacitance characterization methods[J]. Journal of Energy Storage, 2020, 29: 101316. DOI: 10.1016/j.est.2020.101316. |
[34] | ZHAO S Q, LI G H, ZHANG B H, et al. Technological roadmap for potassium-ion hybrid capacitors[J]. Joule, 2024, 8(4): 922-943. DOI: 10.1016/j.joule.2024.03.006. |
[35] | MEHTA T, CHAND P, SHARMA S. Fabrication of ultrahigh capacitance supercapacitor device with superior energy density of sustainable ligand-based zinc-oxide in redox additive electrolyte[J]. Journal of Energy Storage, 2025, 121: 116565. DOI: 10.1016/j.est.2025.116565. |
[36] | 杨家琪, 喻洁, 田宏杰, 等. 考虑新能源性能风险的调频辅助服务市场出清与调度策略[J]. 电力系统自动化, 2020, 44(8): 66-73. DOI: 10.7500/AEPS20190423009. |
YANG J Q, YU J, TIAN H J, et al. Clearing and scheduling strategy of frequency regulation ancillary service market considering performance risk of renewable energy[J]. Automation of Electric Power Systems, 2020, 44(8): 66-73. DOI: 10.7500/AEPS20190423009. | |
[37] | 罗魁, 郭剑波, 王伟胜, 等. 跟网型新能源附加频率控制对频率稳定及小扰动同步稳定影响分析综述[J]. 中国电机工程学报, 2023, 43(4): 1262-1281. DOI: 10.13334/j.0258-8013.pcsee.222307. |
LUO K, GUO J B, WANG W S, et al. Review of impact of grid following variable renewable energy supplementary frequency control on frequency stability and small-disturbance synchronization stability[J]. Proceedings of the CSEE, 2023, 43(4): 1262-1281. DOI: 10.13334/j.0258-8013.pcsee.222307. | |
[38] | ARIYARATHNA T, KULARATNA N, GUNAWARDANE K, et al. Development of supercapacitor technology and its potential impact on new power converter techniques for renewable energy[J]. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2021, 2(3): 267-276. DOI: 10.1109/JESTIE.2021. 3061962. |
[39] | 赵燚, 杨俊丰, 庞建霞, 等. 考虑混合储能主动参与风光储电站的功率分配与调频策略[J]. 电力建设, 2024, 45(7): 144-155. |
ZHAO Y, YANG J F, PANG J X, et al. Power-distribution and frequency-regulation strategies for wind-solar power stations actively supported by hybrid-energy storage[J]. Electric Power Construction, 2024, 45(7): 144-155. | |
[40] | 李长霖, 贾燕冰, 石俊逸, 等. 考虑风电集群效应的风储系统一次调频容量配置策略[J]. 中国电机工程学报, 2025, 45(8): 2969-2981. DOI: 10.13334/j.0258-8013.pcsee.232247. |
LI C L, JIA Y B, SHI J Y, et al. Capacity optimization of wind farms-energy storage participation in primary frequency regulation considering wind power cluster effect[J]. Proceedings of the CSEE, 2025, 45(8): 2969-2981. DOI: 10.13334/j.0258-8013.pcsee.232247. | |
[41] | AGREDANO-TORRES M, XU Q W. Decentralized power management of hybrid hydrogen electrolyzer–supercapacitor systems for frequency regulation of low-inertia grids[J]. IEEE Transactions on Industrial Electronics, 2025, 72(8): 8072-8081. |
[42] | KIM J, GEVORGIAN V, LUO Y S, et al. Supercapacitor to provide ancillary services with control coordination[J]. IEEE Transactions on Industry Applications, 2019, 55(5): 5119-5127. DOI: 10.1109/TIA.2019.2924859. |
[43] | ZHANG Z Y, SUN D, ZHAO C, et al. An improved grid-forming control strategy of wind turbine generators with the supercapacitor for optimizing primary frequency regulation ability[J]. IEEE Transactions on Energy Conversion, 2024, 40(1): 306-322. DOI: 10.1109/TEC.2024.3444774. |
[44] | 颜湘武, 王德胜, 杨琳琳, 等. 直驱风机惯量支撑与一次调频协调控制策略[J]. 电工技术学报, 2021, 36(15): 3282-3292. DOI: 10.19595/j.cnki.1000-6753.tces.l90078. |
YAN X W, WANG D S, YANG L L, et al. Coordinated control strategy of inertia support and primary frequency regulation of PMSG[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3282-3292. DOI: 10.19595/j.cnki.1000-6753.tces.l90078. | |
[45] | LI Z L, LIU F. Frequency and voltage regulation control strategy of Wind Turbine based on supercapacitors under power grid fault[J]. Energy Reports, 2023, 10: 2612-2622. DOI: 10.1016/j.egyr.2023.09.067. |
[46] | 颜湘武, 李锐博, 崔森, 等. 基于超级电容储能的双馈风力发电机一次调节方法[J]. 高电压技术, 2023, 49(1): 331-341. DOI: 10.13336/j.1003-6520.hve.20211079. |
YAN X W, LI R B, CUI S, et al. Primary regulation method of grid-connected DFIG based on supercapacitor energy storage system[J]. High Voltage Engineering, 2023, 49(1): 331-341. DOI: 10.13336/j.1003-6520.hve.20211079. | |
[47] | BEUS M, KRPAN M, KUZLE I, et al. A model predictive control approach to operation optimization of an ultracapacitor bank for frequency control[J]. IEEE Transactions on Energy Conversion, 2021, 36(3): 1743-1755. DOI: 10.1109/TEC.2021.3068036. |
[48] | 唐早, 刘佳, 刘一奎, 等. 基于随机模型预测控制的火电-储能两阶段协同调频控制模型[J]. 电力系统自动化, 2023, 47(3): 86-95. |
TANG Z, LIU J, LIU Y K, et al. Two-stage coordinated frequency regulation control model for thermal power and energy storage based on stochastic model predictive control[J]. Automation of Electric Power Systems, 2023, 47(3): 86-95. | |
[49] | MOHAMED A, WAZEER E M, EL MASRY S M, et al. A novel scheme of load frequency control for a multi-microgrids power system utilizing electric vehicles and supercapacitors[J]. Journal of Energy Storage, 2024, 89: 111799. DOI: 10.1016/j.est.2024.111799. |
[50] | 商侨晏, 李凤婷, 王森, 等. 基于多变量模糊逻辑控制的风储联合系统一次调频策略[J]. 电网技术, 2023, 47(6): 2344-2360. DOI: 10.13335/j.1000-3673.pst.2022.1827. |
SHANG Q Y, LI F T, WANG S, et al. Primary frequency modulation strategy for wind-storage combined system based on multivariable fuzzy logic control[J]. Power System Technology, 2023, 47(6): 2344-2360. DOI: 10.13335/j.1000-3673.pst.2022.1827. | |
[51] | 黎静华, 敖国进, 宋诚鑫, 等. 超级电容参与风电调频的动态响应优化策略[J]. 电力系统自动化, 2024, 48(17): 46-55. |
LI J H, AO G J, SONG C X, et al. Optimal dynamic response strategy for supercapacitor participating in wind power frequency regulation[J]. Automation of Electric Power Systems, 2024, 48(17): 46-55. | |
[52] | 赵振宇, 马旭, 包格日乐图. 基于风速预测模型的风电一次调频仿真研究[J]. 系统仿真学报, 2022, 34(10): 2233-2243. DOI: 10.16182/j.issn1004731x.joss.21-1263. |
ZHAO Z Y, MA X, BAO G. Wind power primary frequency regulation simulation based on wind speed prediction model[J]. Journal of System Simulation, 2022, 34(10): 2233-2243. DOI: 10.16182/j.issn1004731x.joss.21-1263. | |
[53] | 肖吉, 刘国荣, 刘科正. 一种风场主动支撑电网的智能自适应控制方法[J]. 电网与清洁能源, 2022, 38(1): 97-107. |
XIAO J, LIU G R, LIU K Z. An intelligent adaptive control method for wind farms to actively support power grids[J]. Power System and Clean Energy, 2022, 38(1): 97-107. | |
[54] | 颜湘武, 宋子君, 崔森, 等. 基于变功率点跟踪和超级电容器储能协调控制的双馈风电机组一次调频策略[J]. 电工技术学报, 2020, 35(3): 530-541. DOI: 10.19595/j.cnki.1000-6753.tces.190573. |
YAN X W, SONG Z J, CUI S, et al. Primary frequency regulation strategy of doubly-fed wind turbine based on variable power point tracking and supercapacitor energy storage[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 530-541. DOI: 10.19595/j.cnki.1000-6753.tces.190573. | |
[55] | 贾焦心, 颜湘武, 李铁成, 等. 基于改进RoCoF测量方法的储能辅助光伏机组快速调频策略[J]. 电工技术学报, 2022, 37(S1): 93-105. DOI: 10.19595/j.cnki.1000-6753.tces.210610. |
JIA J X, YAN X W, LI T C, et al. Fast frequency regulation strategy of PV power system assisted by energy storage based on improved measurement method of RoCoF[J]. Transactions of China Electrotechnical Society, 2022, 37(S1): 93-105. DOI: 10.19595/j.cnki.1000-6753.tces.210610. | |
[56] | 李鲁阳, 陈龙翔, 陈磊, 等. 用于新能源一次调频的储能经济配置研究[J]. 中国电力, 2024, 57(7): 54-65. DOI: 10.11930/j.issn.1004-9649. 202307042. |
LI L Y, CHEN L X, CHEN L, et al. Research on economic configuration of energy storage for assisting new energy in primary frequency regulation[J]. Electric Power, 2024, 57(7): 54-65. DOI: 10.11930/j.issn.1004-9649. 202307042. | |
[57] | 刘鑫, 李欣然, 谭庄熙, 等. 基于不同种类储能电池参与一次调频的最优策略经济性对比[J]. 高电压技术, 2022, 48(4): 1403-1410. DOI: 10.13336/j.1003-6520.hve.20201398. |
LIU X, LI X R, TAN Z X, et al. Economic comparison of optimal strategies based on different types of energy storage batteries participating in primary frequency regulation[J]. High Voltage Engineering, 2022, 48(4): 1403-1410. DOI: 10.13336/j.1003-6520.hve.20201398. | |
[58] | LIU J, HOU Y G, GUO J Y, et al. A cost-efficient virtual synchronous generator system based on coordinated photovoltaic and supercapacitor[J]. IEEE Transactions on Power Electronics, 2023, 38(12): 16219-16229. DOI: 10.1109/TPEL.2023.3317497. |
[59] | 蔡婷婷, 薛文东. 基于VMD的电力系统一次调频混合储能系统容量优化研究[J]. 东北电力大学学报, 2024, 44(1): 61-71. DOI: 10.19718/j.issn.1005-2992.2024-01-0061-11. |
CAI T T, XUE W D. Optimal configuration of hybrid energy storage system for primary frequency regulation based on VMD[J]. Journal of Northeast Electric Power University, 2024, 44(1): 61-71. DOI: 10.19718/j.issn.1005-2992.2024-01-0061-11. | |
[60] | CAO J, DU W J, WANG H F, et al. Optimal sizing and control strategies for hybrid storage system as limited by grid frequency deviations[J]. IEEE Transactions on Power Systems, 2018, 33(5): 5486-5495. DOI: 10.1109/TPWRS.2018.2805380. |
[61] | CAO Y J, WU Q W, ZHANG H X, et al. Optimal sizing of hybrid energy storage system considering power smoothing and transient frequency regulation[J]. International Journal of Electrical Power & Energy Systems, 2022, 142: 108227. DOI: 10.1016/j.ijepes.2022.108227. |
[62] | AKRAM U, MITHULANANTHAN N, RAZA M Q, et al. RoCoF restrictive planning framework and wind speed forecast informed operation strategy of energy storage system[J]. IEEE Transactions on Power Systems, 2020, 36(1): 224-234. DOI: 10.1109/TPWRS.2020.3001997. |
[63] | 中国长江三峡集团有限公司. 三峡乌兰察布"源网荷储"试验基地创下多项"国内之最"[EB/OL]. [2025-03-28]. https://www.ctg.com.cn/sxjt/xwzx55/zhxw23/1321096/index.html. |
[64] | 陈楠, 林丹, 林灵. 走近大国工程|充电几分钟供电上千户探访全国容量最大"智慧超级充电宝"[EB/OL]. [2023-06-26]. https://www.ccdi.gov.cn/xbln/indexxbl/202306/t20230626_271710.html. |
[65] | 广东省人民政府国有资产监督管理委员会. 广东省首个"锂电+超级电容器"火储联合调频项目并网投产[EB/OL]. [2023-11-08]. https://gzw.gd.gov.cn/gkmlpt/content/4/4278/post_4278534.html#1333. |
[66] | 梁纪峰, 李晓军, 齐锦涛. 新型可变惯量装置为光伏发电装上"频率稳定器"[EB/OL]. [2023-11-21]. http://www.spic.com.cn/spicm/xwzx/hyqy/202311/t20231121_322855.html. |
[67] | 今朝时代. 全球首个超级电容器+磷酸铁锂混合储能系统正式投运[EB/OL]. [2024-06-05]. https://news.bjx.com.cn/html/20240605/1381112.shtml. |
[68] | 数字储能网新闻中心. 244MW/488MW!国内首套"全时域多元调频储能"项目成功交付[EB/OL]. [2024-09-09]. https://www.desn.com.cn/news/show-1706480.html. |
[69] | 东方电气风电股份有限公司. 重磅!全球最大26兆瓦级海上风力发电机组下线![EB/OL]. [2024-10-12]. https://dew.dongfang.com/info/1240/1849.htm. |
[70] | 大唐集团. 南瑞集团支撑全国首套电网侧带超容构网型SVG在西藏投运[EB/OL]. [2024-11-04]. http://paper.people.com.cn/zgnyb/pc/content/202411/04/content_30030379.html. |
[71] | 中国华能. 全球最大容量超级电容混合储能系统成功运![EB/OL]. [2024-12-22]. https://zhuanlan.zhihu.com/p/14051066532. |
[72] | 大唐集团. 大唐海南文昌100MW/200MWh 新型储能示范项目1MW/30s超级电容系统招标[EB/OL]. [2024-10-30]. https://news.bjx.com.cn/html/20241030/1407810.shtml. |
[73] | 四川华东电气集团. 大唐文昌100 MW/200 MWh新型储能示范项目启动受电圆满成功!国内首个混合构网型储能示范项目来了![EB/OL]. [2025-01-17]. https://chu21.com/html/chunengy-41828.shtml. |
[74] | 新华网. 华能全超级电容储能调频系统:以睿渥技术赋能绿色转型[EB/OL]. [2025-04-23]. https://www.news.cn/power/20250423/b66cd43beac3407a8e2eb39b8dd0680a/c.html. |
[75] | 西安热工院有限公司. 全球首个全超级电容储能调频系统投运[EB/OL]. [2025-03-06]. https://www.tpri.com.cn/newcenter_top/detail/785_2025030610380638649044.html. |
[76] | 国家能源之声. 国内首个混合构网型储能示范项目来了![EB/OL]. [2025-03-28]. https://www.thepaper.cn/newsDetail_forward_30521819. |
[77] | 央视新闻. 响应速度提升10倍华中地区首个"超级充电宝"投运[EB/OL]. [2025-03-28]. https://news.cctv.com/2025/04/09/ARTIVAoRbprn NExyGWlsCH4O250409.shtml. |
[78] | 北极星储能网. 陕西省首个超级电容混合储能调频项目建成投运[EB/OL]. [2025-05-15]. https://news.bjx.com.cn/html/20250515/1441521.shtml |
[79] | 中国储能网. 122MW/240.2MWh!山东全省首座"锂电+超级电容"复合式储能项目并网运行[EB/OL]. [2025-06-10]. https://www.escn.com.cn/news/show-2114281.html |
[80] | 中国储能网新闻中心. 500MW/1GWh!中核华兴联合中能建预中标嘉峪关独立储能EPC[EB/OL]. [2024-06-05]. https://www.escn.com.cn/20240606/d90644cd6f114150921061196093eefe/c.html. |
[81] | 超级电容产业网. 磷酸铁锂电池+超级电容!安徽拟建220MW/400MWh共享混合储能调频电站[EB/OL]. [2023-07-28]. http://www.china-sc.org.cn/zxzx/hyxw/2651.html. |
[82] | 中国储能网新闻中心. 华电电科院2MW超级电容储能系统集成飞轮储能系统集成试制招标[EB/OL]. [2023-12-15]. https://www.escn.com.cn/news/show-1636544.html. |
[83] | 中国华电. 中天科技预中标中国华电电力科学研究院超级电容和飞轮储能系统集成试制国内首个混合构网型储能示范项目来了![EB/OL]. [2024-01-18]. https://news.bjx.com.cn/html/20240118/1356661. shtml. |
[84] | 北极星储能网. 磷酸铁锂+超级电容!山东德州400MWh储能示范工程设备采购[EB/OL]. [2024-11-04]. https://news.bjx.com.cn/html/20241104/1408637.shtml. |
[85] | 电力能源招标网. 10MWx10min超级电容储能调频生产改造EPC总承包-2024年3月大唐国际发电股份有限公司辽宁分公司辽宁大唐国际沈东热电有限责任公司中标结果公示[EB/OL]. [2025-03-28]. https://www.dlnyzb.com/detail/20096825. |
[86] | 北极星储能网. 锂电+超容!大唐韩城第二发电公司10MW混合储能辅助调频工程开工建设[EB/OL]. [2025-06-18]. https://news.bjx.com.cn/html/20250618/1446896.shtml |
[87] | 中核集团. 超级电容+锂电池混合储能!中核福建60MWh用户侧储能设备采购[EB/OL]. [2025-03-28]. https://m.bjx.com.cn/mnews/20241017/1405509.shtml. |
[88] | 广州交易集团有限公司. 广州珠江天然气电厂黑启动(含FCB功能)及调频储能项目EPC总承包招标公告【电子标】[EB/OL]. [2024-11-01]. https://gzggzy.cn/jyywjsgcnydlzbgg/1019177.jhtml. |
[89] | 国内采购招投标信息数据平台. 2025山西襄垣42.5MW锂离子电池+超级电容混合储能项目监理招标公告[EB/OL]. [2025-03-28]. https://www.zsxtzb.cn/class5/71276.html. |
[90] | 时代储能网. 2.5亿!成都彭州100MW/200MWh电化学+2.5MW超级电容混储EPC+F招标[EB/OL]. [2025-06-11]. https://www.eraes.com.cn/newsinfo/8426193.html |
[91] | 刘静佳, 苏新凯, 赵璐璐, 等. "锂电+超级电容"混合构网型储能仿真分析及实证研究[J]. 储能科学与技术, 2025, 14(7): 2675-2688. DOI: 10.19799/j.cnki.2095-4239.2025.0359. |
LIU J J, SU X K, ZHAO L L, et al. Simulation analysis and verification research on the hybrid-gfm energy storage system with "lithium batteries + supercapacitors"[J]. Energy Storage Science and Technology, 2025, 14(7): 2675-2688. DOI: 10.19799/j.cnki.2095-4239.2025.0359. | |
[92] | 力容新能源. 新型电力系统的重要角色:超级电容混合储能系统[EB/OL]. [2023-03-02]. https://www.sohu.com/a/648399274_121417711. |
[93] | 时代储能网. 磷酸铁锂+飞轮、+液流、+超级电容……混合储能大规模落地![EB/OL]. [2024-03-25]. https://www.eraes.com.cn/newsinfo/6970441.html. |
[94] | 国际储能网. 20MW!国内首个大容量超级电容混合储能调频项目成功投运[EB/OL]. [2023-03-10]. https://chu21.com/html/chunengy-20717.shtml. |
[95] | 魏胜孟, 刘红亮. 锂电池和超级电容混合储能系统在燃煤电厂的应用与研究[J]. 科技资讯, 2024, 22(21): 112-114. DOI: 10.16661/j.cnki.1672-3791.2407-5042-9996. |
WEI S M, LIU H L. Application and research of lithium battery and supercapacitor hybrid energy storage system in coal-fired power plants[J]. Science & Technology Information, 2024, 22(21): 112-114. DOI: 10.16661/j.cnki.1672-3791.2407-5042-9996. |
[1] | 范亚锋, 易宗琳, 谢莉婧, 李晓明, 苏方远. 基于一阶RC模型的高频超级电容器电容成分分析[J]. 储能科学与技术, 2025, 14(8): 2903-2912. |
[2] | 苏新凯, 赵璐璐, 陈彦桥, 王础, 陈换军, 金翼. 超级电容产业化研究与应用综述[J]. 储能科学与技术, 2025, 14(8): 2994-3003. |
[3] | 杨儒松, 侯朝霞, 李伟, 王颢然, 高旭, 龙海波. PANI/MnO2/rGO-P三元复合电极的制备及在超级电容器中的应用[J]. 储能科学与技术, 2025, 14(7): 2791-2800. |
[4] | 赵云鹏, 李彦芳, 崔昕浩, 孙海燕, 滕莹雪. 原位氮掺杂石墨烯的制备及超级电容器性能研究[J]. 储能科学与技术, 2025, 14(6): 2270-2277. |
[5] | 肖俊阳, 罗金阁, 马伟哲, 程武平, 曾通. 基于改进人工蜂群算法的配电系统储能优化控制策略[J]. 储能科学与技术, 2025, 14(6): 2567-2574. |
[6] | 闫震, 刘强, 李会彬, 张俊, 蒋亚辉. 基于混合储能荷电状态的光伏微网功率优化管理方法[J]. 储能科学与技术, 2025, 14(5): 2067-2077. |
[7] | 徐桂培, 刘浩, 赖洁文, 卢毅锋, 黄辉, 邸会芳, 王振兵. 干法电极技术在超级电容器和锂离子电池中的研究进展[J]. 储能科学与技术, 2025, 14(4): 1445-1460. |
[8] | 刘晓悦, 陈炎, 孙小菲. 飞轮阵列参与电网一次调频双层控制策略[J]. 储能科学与技术, 2025, 14(4): 1536-1547. |
[9] | 张一凡, 刘杰, 李亚南, 郝佳豪, 越云凯, 杨俊玲, 张振涛. 叶轮式压缩机喘振问题研究进展[J]. 储能科学与技术, 2025, 14(1): 269-282. |
[10] | 李玉光, 刘翔, 梁艳召, 刘双振. 飞轮储能装置在轨道交通中的应用研究[J]. 储能科学与技术, 2024, 13(8): 2679-2686. |
[11] | 张楚, 陈栋才, 陈湘萍, 蔡永翔. 多应用场景下储能最优配置经济性效益分析[J]. 储能科学与技术, 2024, 13(6): 2078-2088. |
[12] | 廖琪, 曹小林, 邓谊柏, 杨耀林, 陈挺. 有轨电车超级电容模组液冷散热仿真分析[J]. 储能科学与技术, 2024, 13(2): 702-711. |
[13] | 刘新, 毛喜玲, 闫欣雨, 王俊强, 李孟委. 三维孔道NiMn-MOF电极材料制备及电化学性能研究[J]. 储能科学与技术, 2024, 13(2): 361-369. |
[14] | 唐盼春, 严嵘, 张灿, 孙泽. 堆叠式车载超级电容器热管理方式分析[J]. 储能科学与技术, 2024, 13(2): 483-491. |
[15] | 宋志峰, 段卫锋, 马磊. 超级电容技术支持下电力储能功率调节系统仿真[J]. 储能科学与技术, 2024, 13(2): 623-625. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||