1 |
张世佳, 张熊, 孙现众, 等. 中间相炭微球负极预嵌锂量对软包装锂离子电容器性能的影响[J]. 储能科学与技术, 2016, 5(6): 834-840.
|
|
ZHANG S J, ZHANG X, SUN X Z, et al. Effect of the pre-lithiation capacity of mesocarbon microbeads anode on the performances of a flexible packaging lithium ion capacitors[J]. Energy Storage Science and Technology, 2016, 5(6): 834-840.
|
2 |
LAMB J J, BURHEIM O S. Lithium-ion capacitors: A review of design and active materials[J]. Energies, 2021, 14(4): doi: 10.3390/en14040979.
|
3 |
LI Z, SUN X Z, LIU W J, et al. A comparative study of pre-lithiated hard carbon and soft carbon as anodes for lithium-ion capacitors[J]. Journal of Electrochemistry, 2019, 25(1): 122-136.
|
4 |
郝星辰, 李祥元, 卢海. 锂离子电容器负极/正极容量比的调控与性能[J]. 电池, 2020, 50(5): 466-469.
|
|
HAO X C, LI X Y, LU H. Control of anode/cathode capacity ratio and performance of Li-ion capacitor[J]. Battery Bimonthly, 2020, 50(5): 466-469.
|
5 |
刘腾宇, 张熊, 安亚斌, 等. 石墨烯在锂离子电容器中的应用研究进展[J]. 储能科学与技术, 2020, 9(4): 1030-1043.
|
|
LIU T Y, ZHANG X, AN Y B, et al. Research progress on the application of graphene for lithium-ion capacitors[J]. Energy Storage Science and Technology, 2020, 9(4): 1030-1043.
|
6 |
王赫, 秦楠, 郭鑫, 等. 锂离子电容器硬碳负极材料的表面改性及其电化学性能研究[J]. 化工学报, 2020, 71(6): 2735-2742.
|
|
WANG H, QIN N, GUO X, et al. Surface modification and electrochemical properties of hard carbon anode material for lithium ion capacitors[J]. CIESC Journal, 2020, 71(6): 2735-2742.
|
7 |
YAN D, LI S H, GUO L P, et al. Hard@soft integrated morning glory like porous carbon as a cathode for a high-energy lithium ion capacitor[J]. ACS Applied Materials & Interfaces, 2018, 10(50): 43946-43952.
|
8 |
陈玮, 聂艳艳, 孙晓刚, 等. 预嵌锂多壁碳纳米管的性能[J]. 材料研究学报, 2019, 33(5): 371-378.
|
|
CHEN W, NIE Y Y, SUN X G, et al. Performance of lithium-ion capacitors using pre-lithiated multi-walled carbon nanotube composite anode[J]. Chinese Journal of Materials Research, 2019, 33(5): 371-378.
|
9 |
蔡满园, 孙晓刚, 陈玮, 等. 以预锂化多壁碳纳米管为负极的锂离子电容器性能[J]. 材料工程, 2019, 47(5): 145-152.
|
|
CAI M Y, SUN X G, CHEN W, et al. Performance of lithium-ion capacitors using pre-lithiated multiwalled carbon nanotubes as negative electrode[J]. Journal of Materials Engineering, 2019, 47(5): 145-152.
|
10 |
郑超, 周旭峰, 刘兆平, 等. 活性石墨烯/活性炭干法复合电极片制备及其在超级电容器中的应用[J]. 储能科学与技术, 2016, 5(4): 486-491.
|
|
ZHENG C, ZHOU X F, LIU Z P, et al. Preparation of activated graphene/activated carbon dry composite electrode and its application in supercapacitors[J]. Energy Storage Science and Technology, 2016, 5(4): 486-491.
|
11 |
KIRSCH D J, LACEY S D, KUANG Y D, et al. Scalable dry processing of binder-free lithium-ion battery electrodes enabled by holey graphene[J]. ACS Applied Energy Materials, 2019, 2(5): 2990-2997.
|
12 |
WANG M, HU J Z, WANG Y K, et al. The influence of polyvinylidene fluoride (PVDF) binder properties on LiNi0.33Co0.33Mn0.33O2 (NMC) electrodes made by a dry-powder-coating process[J]. Journal of the Electrochemical Society, 2019, 166(10): A2151-A2157.
|
13 |
ASTAFYEVA K, DOUSSET C, BUREAU Y, et al. High energy Li-ion electrodes prepared via a solventless melt process[J]. Batteries & Supercaps, 2020, 3(4): 341-343.
|
14 |
钟明, 闫伟, 王佳超, 等. 炭基锂离子电容器负极预嵌锂技术研究进展[J]. 储能科学与技术, 2018, 7(4): 639-645.
|
|
ZHONG M, YAN W, WANG J C, et al. Research progress on pre-lithiation in carbon-based lithium-ion capacitor[J]. Energy Storage Science and Technology, 2018, 7(4): 639-645.
|
15 |
王立超. 锂离子电容器预锂化技术评述[J]. 山东工业技术, 2021(1): 85-88.
|
|
WANG L C. Review on prelithiation technology of lithium-ion capacitors[J]. Journal of Shandong Industrial Technology, 2021(1): 85-88.
|
16 |
刘凤丹, 薛龙均. 成型工艺对超级电容器活性炭电极性能的影响[J]. 电子元件与材料, 2017, 36(2): 25-28.
|
|
LIU F D, XUE L J. Influences of the fabrication technology on the properties of activited carbon electrode in ultracapaciors[J]. Electronic Components and Materials, 2017, 36(2): 25-28.
|