储能科学与技术 ›› 2022, Vol. 11 ›› Issue (8): 2519-2525.doi: 10.19799/j.cnki.2095-4239.2022.0177

• 电化学储能安全专刊 • 上一篇    下一篇

荷电状态和电池排列对锂离子电池热失控传播的影响

张青松(), 赵洋, 刘添添   

  1. 中国民航大学,民航热灾害防控与应急重点实验室,天津 300300
  • 收稿日期:2022-03-07 修回日期:2022-03-28 出版日期:2022-08-05 发布日期:2022-08-03
  • 通讯作者: 张青松 E-mail:nkzqsong@126.com
  • 作者简介:张青松(1977—),男,博士,教授,研究方向为锂电池火灾防控理论与技术,E-mail:nkzqsong@126.com
  • 基金资助:
    国家自然科学基金民航联合基金重点支持项目(2033204)

Effects of state of charge and battery layout on thermal runaway propagation in lithium-ion batteries

Qingsong ZHANG(), Yang ZHAO, Tiantian LIU   

  1. Center for Aircraft Fire and Emergency, Civil Aviation University of China, Tianjin 300300, China
  • Received:2022-03-07 Revised:2022-03-28 Online:2022-08-05 Published:2022-08-03
  • Contact: Qingsong ZHANG E-mail:nkzqsong@126.com

摘要:

当前锂离子电池热失控传播特性研究主要聚焦于电池形态和触发方式,本研究采用自行研制的锂电池阵列级联热失控实验平台,对不同荷电状态(state of charge,SOC)及不同排列间隔的锂离子电池热失控传播特性开展研究。结果表明:热失控传播速度随着SOC的增加而加快,100%SOC电池组中热失控传播结束时间比70%SOC电池组热失控传播结束时间少70 s,100%SOC电池组热失控最高温度可达621.81 ℃,50%SOC的电池不会出现热失控传播现象;对于100%SOC的电池,电池间横向间距越大,热失控越难在电池组之间传播,当电池间横向间距为3 mm时,热失控不会在电池组中传播。电池间的热失控主要以层传层的形式传播。本研究对优化电池布置、防止和控制电池热失控传播具有较高的应用价值。

关键词: 锂离子电池, 荷电状态, 电池排列, 热失控传播

Abstract:

Currently, studies on the thermal runaway propagation characteristics of lithium-ion batteries mainly focus on the battery shape and trigger mode. This study uses a self-developed lithium-ion battery array cascade thermal-runaway experimental platform to investigate the thermal runaway propagation characteristics of lithium-ion batteries using different states of charge (SOC) and arrangement intervals. The results show that the rate of thermal runaway propagation decreases with a decrease in SOC. The total duration of thermal runaway propagation in a 70%SOC battery pack is 70 seconds longer than that in a 100%SOC battery pack. The maximum thermal runaway propagation temperature in a 100%SOC battery pack can reach 621.81 ℃, and no thermal runaway propagation occurs in a 50%SOC battery pack. For batteries with 100%SOC, the larger the transverse spacing between batteries, the more difficult it is for a thermal runaway to spread between battery packs. Thermal runaway will not spread in battery packs when the transverse spacing between batteries is 3 mm. The thermal runaway between batteries mainly propagates in a layer-by-layer approach. The research has a high application value for optimizing battery layout and preventing and controlling battery thermal runaway propagation.

Key words: lithium-ion battery, state of charge, battery layout, thermal runaway propagation

中图分类号: