1 |
李先锋, 张洪章, 郑琼, 等. 能源革命中的电化学储能技术[J]. 中国科学院院刊, 2019, 34(4): 443-449.
|
|
LI X F, ZHANG H Z, ZHENG Q, et al. Electrochemical energy storage technology in energy revolution[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 443-449.
|
2 |
DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.
|
3 |
胥彦玲, 李纯, 扆铁梅, 等. 基于专利分析的锂离子电池储能技术发展态势[J]. 储能科学与技术, 2017, 6(2): 323-329.
|
|
XU Y L, LI C, YI T M, et al. Development trend of lithium-ion battery energy storage technology based on patent analysis[J]. Energy Storage Science and Technology, 2017, 6(2): 323-329.
|
4 |
周芳, 刘思, 侯敏. 锂电池技术在储能领域的应用与发展趋势[J]. 电源技术, 2019, 43(2): 348-350.
|
|
ZHOU F, LIU S, HOU M. Application and development tendency of lithium battery technology in energy storage field[J]. Chinese Journal of Power Sources, 2019, 43(2): 348-350.
|
5 |
胡振恺, 雷博, 李勇琦, 等. 储能用锂离子电池安全性测试与评估方法比较[J]. 储能科学与技术, 2022, 11(5): 1650-1656.
|
|
HU Z K, LEI B, LI Y Q, et al. Comparative study on safety test and evaluation methods of lithium-ion batteries for energy storage[J]. Energy Storage Science and Technology, 2022, 11(5): 1650-1656.
|
6 |
汪伟伟, 丁楚雄, 高玉仙, 等. 磷酸铁锂及三元电池在不同领域的应用[J]. 电源技术, 2020, 44(9): 1383-1386.
|
|
WANG W W, DING C X, GAO Y X, et al. Application of LFP and NCM batteries in different fields[J]. Chinese Journal of Power Sources, 2020, 44(9): 1383-1386.
|
7 |
高平, 许铤, 王寅. 储能用锂离子电池及其系统国内外标准研究[J]. 储能科学与技术, 2017, 6(2): 270-274.
|
|
GAO P, XU T, WANG Y. Research on the standards of lithium ion battery and its system used in energy storage[J]. Energy Storage Science and Technology, 2017, 6(2): 270-274.
|
8 |
OULD ELY T, KAMZABEK D, CHAKRABORTY D. Batteries safety: Recent progress and current challenges[J]. Frontiers in Energy Research, 2019, 7: 71.
|
9 |
吴静云, 黄峥, 郭鹏宇. 储能用磷酸铁锂(LFP)电池消防技术研究进展[J]. 储能科学与技术, 2019, 8(3): 495-499.
|
|
WU J Y, HUANG Z, GUO P Y. Research progress on fire protection technology of LFP lithium-ion battery used in energy storage power station[J]. Energy Storage Science and Technology, 2019, 8(3): 495-499.
|
10 |
清华大学. 2019年动力电池安全性研究报告[R/OL]. 北京: 2019. [2019-12-10]. http://www.199it.com/archives/929672.html.
|
|
Tsinghua University. 2019 Power battery safety study report[R/OL]. Beijing: 2019. [2019-12-10]. http://www.199it.com/archives/929672.html.
|
11 |
FENG X N, SUN J, OUYANG M G, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[J]. Journal of Power Sources, 2015, 275: 261-273.
|
12 |
LAMB J, ORENDORFF C J, STEELE L A M, et al. Failure propagation in multi-cell lithium ion batteries[J]. Journal of Power Sources, 2015, 283: 517-523.
|
13 |
LIAO Z H, ZHANG S, LI K, et al. A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries[J]. Journal of Power Sources, 2019, 436: doi:10.1016/j.jpowsour. 2019.226879.
|
14 |
赖铱麟, 杨凯, 刘皓, 等. 锂离子电池安全预警方法综述[J]. 储能科学与技术, 2020, 9(6): 1926-1932.
|
|
LAI Y L, YANG K, LIU H, et al. Lithium-ion battery safety warning methods review[J]. Energy Storage Science and Technology, 2020, 9(6): 1926-1932.
|
15 |
RAHIMI-EICHI H, OJHA U, BARONTI F, et al. Battery management system: An overview of its application in the smart grid and electric vehicles[J]. IEEE Industrial Electronics Magazine, 2013, 7(2): 4-16.
|
16 |
谭泽富, 孙荣利, 杨芮, 等. 电池管理系统发展综述[J]. 重庆理工大学学报(自然科学), 2019, 33(9): 40-45.
|
|
TAN Z F, SUN R L, YANG R, et al. Overview of battery management system[J]. Journal of Chongqing University of Technology (Natural Science), 2019, 33(9): 40-45.
|
17 |
RAGHAVAN A, KIESEL P, SOMMER L W, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: Cell embedding method and performance[J]. Journal of Power Sources, 2017, 341: 466-473.
|
18 |
GANGULI A, SAHA B, RAGHAVAN A, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: Internal cell signals and utility for state estimation[J]. Journal of Power Sources, 2017, 341: 474-482.
|
19 |
SRINIVASAN R, DEMIREV P A, CARKHUFF B G. Rapid monitoring of impedance phase shifts in lithium-ion batteries for hazard prevention[J]. Journal of Power Sources, 2018, 405: 30-36.
|
20 |
SRINIVASAN R, DEMIREV P A, CARKHUFF B G. Rapid monitoring of impedance phase shifts in lithium-ion batteries for hazard prevention[J]. Journal of Power Sources, 2018, 405: 30-36.
|
21 |
JIN Y, ZHENG Z K, WEI D H, et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning[J]. Joule, 2020, 4(8): 1714-1729.
|
22 |
王铭民, 孙磊, 郭鹏宇, 等. 基于气体在线监测的磷酸铁锂储能电池模组过充热失控特性[J]. 高电压技术, 2021, 47(1): 279-286.
|
|
WANG M M, SUN L, GUO P Y, et al. Overcharge and thermal runaway characteristics of lithium iron phosphate energy storage battery modules based on gas online monitoring[J]. High Voltage Engineering, 2021, 47(1): 279-286.
|
23 |
国家质量监督检验检疫总局, 中国国家标准化管理委员会. 独立式感烟火灾探测报警器: GB 20517—2006[S]. 北京: 中国标准出版社, 2007.
|
|
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Self-contained smoke alarms: GB 20517—2006[S]. Beijing: Standards Press of China, 2007.
|
24 |
WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131.
|
25 |
冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016.
|
|
FENG X N. Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle: Test, modeling and prevention[D]. Beijing: Tsinghua University, 2016.
|
26 |
BAI P, LI J, BRUSHETT F R, et al. Transition of lithium growth mechanisms in liquid electrolytes[J]. Energy & Environmental Science, 2016, 9(10): 3221-3229.
|
27 |
LANG J L, LONG Y Z, QU J L, et al. One-pot solution coating of high quality LiF layer to stabilize Li metal anode[J]. Energy Storage Materials, 2019, 16: 85-90.
|
28 |
ZHAO L W, WATANABE I, DOI T, et al. TG-MS analysis of solid electrolyte interphase (SEI) on graphite negative-electrode in lithium-ion batteries[J]. Journal of Power Sources, 2006, 161(2): 1275-1280.
|
29 |
颜雪冬, 马兴立, 李维义, 等. 浅析软包装锂离子电池胀气问题[J]. 电源技术, 2013, 37(9): 1536-1538.
|
|
YAN X D, MA X L, LI W Y, et al. Analysis of swollen problem in soft packing lithium-ion batteries[J]. Chinese Journal of Power Sources, 2013, 37(9): 1536-1538.
|
30 |
GACHOT G, GRUGEON S, ESHETU G G, et al. Thermal behaviour of the lithiated-graphite/electrolyte interface through GC/MS analysis[J]. Electrochimica Acta, 2012, 83: 402-409.
|
31 |
黄沛丰. 锂离子电池火灾危险性及热失控临界条件研究[D]. 合肥: 中国科学技术大学, 2018.
|
|
HUANG P F. Research on the fire risk of lithium ion battery and the critical condition of thermal runaway behavior[D]. Hefei: University of Science and Technology of China, 2018.
|
32 |
PING P, WANG Q S, HUANG P F, et al. Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test[J]. Journal of Power Sources, 2015, 285: 80-89.
|
33 |
RÖDER P, BABA N, FRIEDRICH K A, et al. Impact of delithiated Li0FePO4 on the decomposition of LiPF6-based electrolyte studied by accelerating rate calorimetry[J]. Journal of Power Sources, 2013, 236: 151-157.
|
34 |
YANG H, SHEN X D. Dynamic TGA-FTIR studies on the thermal stability of lithium/graphite with electrolyte in lithium-ion cell[J]. Journal of Power Sources, 2007, 167(2): 515-519.
|
35 |
KAWAMURA T, KIMURA A, EGASHIRA M, et al. Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells[J]. Journal of Power Sources, 2002, 104(2): 260-264.
|
36 |
WANG Q S, SUN J H, YAO X L, et al. Thermal stability of LiPF6/EC+DEC electrolyte with charged electrodes for lithium ion batteries[J]. Thermochimica Acta, 2005, 437(1/2): 12-16.
|
37 |
FERNANDES Y, BRY A, DE PERSIS S. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery[J]. Journal of Power Sources, 2018, 389: 106-119.
|
38 |
唐文杰, 姜欣, 刘昊琰, 等. 基于气液逸出物图像识别的锂离子电池火灾早期预警[J/OL]. 高电压技术: 1-12. [2022-05-04]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=GDYJ2022022201P&uniplatform=NZKPT&v=KLS-wUp7 FUktLy1ShGVS9y72018A-tpj3ZlyGfYL5negSohw8UGQRsmwl5h3nI1w.
|
|
TANG W J, JIANG X, LIU H Y, et al. Early warning of lithium-ion battery fire based on image recognition of gas-liquid escape[J/OL]. High Voltage Engineering: 1-12.[2022-05-04]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=GDYJ2022022201P&uniplatform=NZKPT&v=KLS-wUp7FUktLy1ShGVS9y72018A-tpj3ZlyGfYL5negSohw8UGQR smwl5h3nI1w.
|
39 |
WANG Z P, YUAN J, ZHU X Q, et al. Overcharge-to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials: A comparison study[J]. Journal of Energy Chemistry, 2021, 55: 484-498.
|
40 |
YE J N, CHEN H D, WANG Q S, et al. Thermal behavior and failure mechanism of lithium ion cells during overcharge under adiabatic conditions[J]. Applied Energy, 2016, 182: 464-474.
|
41 |
REN D S, FENG X N, LU L G, et al. An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery[J]. Journal of Power Sources, 2017, 364: 328-340.
|