储能科学与技术 ›› 2023, Vol. 12 ›› Issue (2): 570-578.doi: 10.19799/j.cnki.2095-4239.2022.0630

• 储能测试与评价 • 上一篇    下一篇

基于递推门控循环单元神经网络的锂离子电池荷电状态实时估计方法

朱文凯(), 周星(), 刘亚杰, 张涛(), 宋元明   

  1. 国防科技大学系统工程学院,湖南 长沙 410073
  • 收稿日期:2022-10-27 修回日期:2022-11-20 出版日期:2023-02-05 发布日期:2023-02-24
  • 通讯作者: 周星,张涛 E-mail:zhuwenkai20@nudt.edu.cn;395877464@ qq.com;zhangtao@ nudt.edu.cn
  • 作者简介:朱文凯(1998—),男,硕士研究生,研究方向为锂离子电池状态监测,E-mail:zhuwenkai20@nudt.edu.cn
  • 基金资助:
    湖南省科技创新计划资助项目(2021RC2074)

Real time state of charge estimation method of lithium-ion battery based on recursive gated recurrent unit neural network

Wenkai ZHU(), Xing ZHOU(), Yajie LIU, Tao ZHANG(), Yuanming SONG   

  1. College of Systems Engineering, National University of Defense Technology, Changsha 410073, Hunan, China
  • Received:2022-10-27 Revised:2022-11-20 Online:2023-02-05 Published:2023-02-24
  • Contact: Xing ZHOU, Tao ZHANG E-mail:zhuwenkai20@nudt.edu.cn;395877464@ qq.com;zhangtao@ nudt.edu.cn

摘要:

锂离子电池荷电状态(state of charge,SOC)的准确估计对于保证电池系统安全运行至关重要。目前基于门控循环单元(gated recurrent unit,GRU)等循环神经网络的SOC估计方法得到了广泛关注,其无需预设电池模型即可实现SOC准确估计。然而,这类估计方法存在计算复杂度过高而难以在工程中实际应用的问题。针对传统GRU神经网络估计SOC时需要进行大量隐状态迭代而导致计算复杂度过高的问题,提出了网络隐状态时序继承的递推更新方式,通过改进GRU网络的输出结构,从而实现了仅需对当前时刻采样数据进行一次网络计算即可准确获取当前时刻SOC估计值。与文献中报道传统GRU方法相比,该递推GRU方法在保证SOC估计准确度不降低的情况下,能减少99%以上的计算量,具有较好的应用前景。此外,针对部分应用场景中电池训练数据缺乏的问题,方法能够结合迁移学习来快速完成网络训练。通过实验室测试数据集以及公开数据集进行验证,该方法能对不同温度环境、不同老化状态以及不同型号的锂离子电池进行准确SOC估计,其最大估计误差均不高于3%。

关键词: 锂离子电池, 门控循环神经网络, 迁移学习, 荷电状态

Abstract:

Accurate estimation of the state of charge of Li-ion batteries is required to guarantee the safe operation of battery systems. SOC estimation methods based on recurrent neural networks, like Gated Recurrent Unit, have recently received much attention because they can achieve accurate SOC estimation without using pre-defined battery models. However, due to their high computational complexity, these estimation methods are difficult to apply in engineering. To address the issues of high computational complexity caused by the large number of hidden state iterations required for SOC estimation in traditional GRU neural networks, a recursive update method with hidden state temporal succession is proposed, and it is possible to obtain the accurate SOC estimate at the current moment with only one network calculation of the sampled data at the current moment by improving the output structure of GRU networks. When compared to the traditional GRU method reported in the literature, this recursive GRU method can reduce the computational effort by more than 99% while maintaining SOC estimation accuracy, which has a better application prospect. Furthermore, in some application scenarios where there is a lack of battery training data, the method can combine migration learning to quickly complete network training. The method has been validated using laboratory test datasets and public datasets, and it is capable of performing accurate SOC estimation for different temperature environments, aging states, and Li-ion battery models, with a maximum estimation error of less than 3%.

Key words: lithium-ion battery, gated recurrent unit network, transfer learning, state of charge

中图分类号: