1 |
JINDAL P, KATIYAR R, BHATTACHARYA J. Evaluation of accuracy for Bernardi equation in estimating heat generation rate for continuous and pulse-discharge protocols in LFP and NMC based Li-ion batteries[J]. Applied Thermal Engineering, 2022, 201: doi: 10.1016/j.applthermaleng.2021.117794.
|
2 |
JIANG Z Y, QU Z G. Lithium-ion battery thermal management using heat pipe and phase change material during discharge-charge cycle: A comprehensive numerical study[J]. Applied Energy, 2019, 242: 378-392.
|
3 |
BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12.
|
4 |
SATO N, YAGI K. Thermal behavior analysis of nickel metal hydride batteries for electric vehicles[J]. JSAE Review, 2000, 21(2): 205-211.
|
5 |
LIU S B, ZHANG H Y, XU X B. A study on the transient heat generation rate of lithium-ion battery based on full matrix orthogonal experimental design with mixed levels[J]. Journal of Energy Storage, 2021, 36: doi: 10.1016/j.est.2021.102446.
|
6 |
ZIAT K, LOUAHLIA H, PETRONE R, et al. Experimental investigation on the impact of the battery charging/discharging current ratio on the operating temperature and heat generation[J]. International Journal of Energy Research, 2021, 45(11): 16754-16768.
|
7 |
LIN C J, XU S C, LIU J L. Measurement of heat generation in a 40 Ah LiFePO4 prismatic battery using accelerating rate calorimetry[J]. International Journal of Hydrogen Energy, 2018, 43(17): 8375-8384.
|
8 |
LYU P Z, HUO Y T, QU Z G, et al. Investigation on the thermal behavior of Ni-rich NMC lithium ion battery for energy storage[J]. Applied Thermal Engineering, 2020, 166: doi:10.1016/j.applthermaleng. 2019.114749.
|
9 |
SHENG L, SU L, ZHANG H Y, et al. An improved calorimetric method for characterizations of the specific heat and the heat generation rate in a prismatic lithium ion battery cell[J]. Energy Conversion and Management, 2019, 180: 724-732.
|
10 |
LIU G M, LU L G, LI J Q, et al. Thermal modeling of a LiFePO4/graphite battery and research on the influence of battery temperature rise on EV driving range estimation[C]//2013 IEEE Vehicle Power and Propulsion Conference (VPPC). October 15-18, 2013, Beijing, China. IEEE, 2013: 1-5.
|
11 |
钱柯宇. 动力电池全生命周期产热规律仿真研究[D]. 杭州: 浙江大学, 2021.
|
|
QIAN K Y. Simulation research on heat production law of power battery in the whole life cycle[D]. Hangzhou: Zhejiang University, 2021.
|
12 |
黄瑞, 陈芬放, 吴启超, 等. 老化对不同能量密度锂电池产热的影响[J]. 实验技术与管理, 2021, 38(4): 42-47.
|
|
HUANG R, CHEN F F, WU Q C, et al. Effect of ageing on heat generation of lithium-ion batteries with different energy density[J]. Experimental Technology and Management, 2021, 38(4): 42-47.
|
13 |
王康康, 高飞, 杨凯, 等. 不同健康状态等级的储能磷酸铁锂电池熵变系数及放电产热研究[J]. 高电压技术, 2017, 43(7): 2241-2248.
|
|
WANG K K, GAO F, YANG K, et al. Research of LiFePO4/C energy storage batteriesê entropy coefficient and discharge heat generation based on the state of health[J]. High Voltage Engineering, 2017, 43(7): 2241-2248.
|
14 |
陈兵, 郑莉莉, 李希超, 等. 老化电池的放电性能与充放电产热特性[J]. 储能科学与技术, 2022, 11(2): 679-689.
|
|
CHEN B, ZHENG L L, LI X C, et al. Discharge performance and charge-discharge heat generation characteristics of aging batteries[J]. Energy Storage Science and Technology, 2022, 11(2): 679-689.
|
15 |
LIU G M, OUYANG M G, LU L G, et al. Analysis of the heat generation of lithium-ion battery during charging and discharging considering different influencing factors[J]. Journal of Thermal Analysis and Calorimetry, 2014, 116(2): 1001-1010.
|
16 |
甘云华, 谭梅鲜, 梁嘉林, 等. 恒功率放电下锂离子电池的产热特性[J]. 华南理工大学学报(自然科学版), 2020, 48(7): 1-8.
|
|
GAN Y H, TAN M X, LIANG J L, et al. Analysis on heat generation in a lithium-ion battery under constant power discharging[J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(7): 1-8.
|
17 |
FANG K Z, CHEN S, MU D B, et al. The heat generation rate of nickel-metal hydride battery during charging/discharging[J]. Journal of Thermal Analysis and Calorimetry, 2013, 112(2): 977-981.
|
18 |
MEI W X, LI H, ZHAO C P, et al. Numerical study on thermal characteristics comparison between charge and discharge process for lithium ion battery[J]. International Journal of Heat and Mass Transfer, 2020, 162: doi: 10.1016/j.ijheatmasstransfer.2020. 120319.
|
19 |
李维平, 李隆键, 陈化雨. 锂离子电池可逆与不可逆生热特性研究[J]. 汽车工程学报, 2019, 9(2): 123-129.
|
|
LI W P, LI L J, CHEN H Y. Investigation on reversible and irreversible heat generation of lithium-ion battery[J]. Chinese Journal of Automotive Engineering, 2019, 9(2): 123-129.
|
20 |
LIU Y D, LIU Q, LI Z F, et al. Failure study of commercial LiFePO4 cells in over-discharge conditions using electrochemical impedance spectroscopy[J]. Journal of the Electrochemical Society, 2014, 161(4): doi: 10.1149/2.039306jes.
|
21 |
BARRÉ A, DEGUILHEM B, GROLLEAU S, et al. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J]. Journal of Power Sources, 2013, 241: 680-689.
|