1 |
ZALBA B, MARı́N J M, CABEZA L F, et al. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications[J]. Applied Thermal Engineering, 2003, 23(3): 251-283.
|
2 |
邹平, 姜鲁艳, 凌浩恕, 等. 应用于日光温室墙体的相变材料热物性优化研究[J]. 太阳能学报, 2022, 43(9): 139-147.
|
|
ZOU P, JIANG L Y, LING H S, et al. Study on optimization of thermophysical properties of phase change materials used in solar greenhouse walls[J]. Acta Energiae Solaris Sinica, 2022, 43(9): 139-147.
|
3 |
安治国, 陈星, 田茂飞, 等. PCM泡沫铝/液冷复合式锂电池热管理[J]. 重庆交通大学学报(自然科学版), 2021, 40(1): 140-146.
|
|
AN Z G, CHEN X, TIAN M F, et al. Thermal management of PCM foam aluminum/liquid cooling composite lithium-ion battery[J]. Journal of Chongqing Jiaotong University (Natural Sciences), 2021, 40(1): 140-146.
|
4 |
贺秀芬, 白宇辰, 刘洋, 等. 玻璃真空集热管相变储能单元特性实验测试[J]. 太阳能学报, 2020, 41(5): 40-47.
|
|
HE X F, BAI Y C, LIU Y, et al. Experimental investigation of a heat storage unit integrated with vacuum tube and heat pipe[J]. Acta Energiae Solaris Sinica, 2020, 41(5): 40-47.
|
5 |
SARBU I, DORCA A. Review on heat transfer analysis in thermal energy storage using latent heat storage systems and phase change materials[J]. International Journal of Energy Research, 2019, 43(1): 29-64.
|
6 |
张正国, 王学泽, 方晓明. 石蜡/膨胀石墨复合相变材料的结构与热性能[J]. 华南理工大学学报(自然科学版), 2006, 34(3): 1-5.
|
|
ZHANG Z G, WANG X Z, FANG X M. Structure and thermal properties of composite paraffin/expanded graphite phase-change material[J]. Journal of South China University of Technology (Natural Science Edition), 2006, 34(3): 1-5.
|
7 |
路阳, 彭国伟, 王智平, 等. 熔融盐相变储热材料的研究现状及发展趋势[J]. 材料导报, 2011, 25(21): 38-42.
|
|
LU Y, PENG G W, WANG Z P, et al. A review on research for molten salt as a phase change material[J]. Materials Review, 2011, 25(21): 38-42.
|
8 |
鲁博辉, 师志成, 张永学, 等. 石蜡/Fe3O4纳米颗粒复合相变材料在管壳式储热单元中的储/放热性能研究[J]. 储能科学与技术, 2021, 10(5): 1709-1719.
|
|
LU B H, SHI Z C, ZHANG Y X, et al. Investigation of the charging and discharging performance of paraffin/nano-Fe3O4 composite phase change material in a shell and tube thermal energy storage unit[J]. Energy Storage Science and Technology, 2021, 10(5): 1709-1719.
|
9 |
DENG S X, NIE C D, WEI G Y, et al. Improving the melting performance of a horizontal shell-tube latent-heat thermal energy storage unit using local enhanced finned tube[J]. Energy and Buildings, 2019, 183: 161-173.
|
10 |
ZHANG S Q, PU L, XU L L, et al. Melting performance analysis of phase change materials in different finned thermal energy storage[J]. Applied Thermal Engineering, 2020, 176: doi: 10.1016/j.applthermaleng.2020.115425.
|
11 |
王君雷, 徐祥贵, 孙通, 等. 一种螺旋翅片式相变储热单元的储热优化模拟[J]. 储能科学与技术, 2021, 10(2): 514-522.
|
|
WANG J L, XU X G, SUN T, et al. Simulation of heat storage process in spiral fin phase change heat storage unit[J]. Energy Storage Science and Technology, 2021, 10(2): 514-522.
|
12 |
ZHAO C Y, LU W, TIAN Y. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs)[J]. Solar Energy, 2010, 84(8): 1402-1412.
|
13 |
陈宝明, 张艳勇, 李佳阳. 铝/石蜡复合相变材料蓄热性能的数值模拟[J]. 热科学与技术, 2021, 20(6): 528-536.
|
|
CHEN B M, ZHANG Y Y, LI J Y. Numerical simulation of heat storage performance of aluminum/paraffin composite phase change material[J]. Journal of Thermal Science and Technology, 2021, 20(6): 528-536.
|
14 |
徐众, 侯静, 万书权, 等. 金属泡沫/石蜡复合相变材料的制备及热性能研究[J]. 储能科学与技术, 2020, 9(1): 103-110.
|
|
XU Z, HOU J, WAN S Q, et al. Preparation and thermal properties of metal foam/paraffin composite phase change materials[J]. Energy Storage Science and Technology, 2020, 9(1): 103-110.
|
15 |
KARAMI R, KAMKARI B. Experimental investigation of the effect of perforated fins on thermal performance enhancement of vertical shell and tube latent heat energy storage systems[J]. Energy Conversion and Management, 2020, 210: doi: 10.1016/j.enconman.2020.112679.
|
16 |
LI H Y, HU C Z, HE Y C, et al. Effect of perforated fins on the heat-transfer performance of vertical shell-and-tube latent heat energy storage unit[J]. Journal of Energy Storage, 2021, 39: doi: 10.1016/j.est.2021.102647.
|
17 |
TAO Y B, YOU Y, HE Y L. Lattice Boltzmann simulation on phase change heat transfer in metal foams/paraffin composite phase change material[J]. Applied Thermal Engineering, 2016, 93: 476-485.
|
18 |
史燕华, 周帼彦, 黄媛媛, 等. 基于六面体模型的开孔泡沫金属强化传热机理[J]. 化学工程, 2016, 44(11): 23-29.
|
|
SHI Y H, ZHOU G Y, HUANG Y Y, et al. Heat transfer enhancement mechanism of open-cell metal-foam structures based on hexahedral structure model[J]. Chemical Engineering, 2016, 44(11): 23-29.
|
19 |
LAFDI K, MESALHY O, SHAIKH S. Experimental study on the influence of foam porosity and pore size on the melting of phase change materials[J]. Journal of Applied Physics, 2007, 102(8): doi: 10.1063/1.2802183.
|
20 |
KAMKARI B, AMLASHI H J. Numerical simulation and experimental verification of constrained melting of phase change material in inclined rectangular enclosures[J]. International Communications in Heat and Mass Transfer, 2017, 88: 211-219.
|