| 1 | GAO Y J, YU H R, WU J. Launch scheme and control law design of small tube launched UAV[C]//2021 China Automation Congress (CAC). October 22-24, 2021, Beijing, China. IEEE, 2022: 8154-8158. | 
																													
																						| 2 | ROSTAMI M, DEHGHAN MANSHADI M, AFSHARI E. Performance evaluation of two proton exchange membrane and alkaline fuel cells for use in UAVs by investigating the effect of operating altitude[J]. International Journal of Energy Research, 2022, 46(2): 1481-1496. | 
																													
																						| 3 | 叶帅辰, 姚晓先. 无人机自力起飞方式研究[J]. 火力与指挥控制, 2019, 44(4): 6-11. | 
																													
																						|  | YE S C, YAO X X. Self-power take-off method of unmanned aerial vehicles(UAVs)[J]. Fire Control & Command Control, 2019, 44(4): 6-11. | 
																													
																						| 4 | 叶帅辰, 姚晓先. 无人机他力发射技术综述[J]. 指挥与控制学报, 2018, 4(1): 15-21. | 
																													
																						|  | YE S C, YAO X X. On the other-power launch technology of unmanned aerial vehicles[J]. Journal of Command and Control, 2018, 4(1): 15-21. | 
																													
																						| 5 | 杨寒, 王虹玥, 张家仙. 弹射器发展综述[C]//中国航天科工集团公司, 中国航天科技集团公司, 大连市人民政府. 中国航天第三专业信息网第三十八届技术交流会暨第二届空天动力联合会议论文集——特种推进及新型推进技术. 北京: 中国航天第三专业信息网, 2017. | 
																													
																						| 6 | KONDRATIUK M, AMBROZIAK L. Design and dynamics of kinetic launcher for unmanned aerial vehicles[J]. Applied Sciences, 2020, 10(8): 2949. | 
																													
																						| 7 | 刘南宏, 张新敬, 徐玉杰, 等. 筒式压缩空气弹射系统内弹道性能研究[J]. 兵器装备工程学报, 2022, 43(1): 79-85. | 
																													
																						|  | LIU N H, ZHANG X J, XU Y J, et al. Study on interior ballistic performance of cylindrical compressed air catapult launch system[J]. Journal of Ordnance Equipment Engineering, 2022, 43(1): 79-85. | 
																													
																						| 8 | 王永庆. 固定翼舰载战斗机关键技术与未来发展[J]. 航空学报, 2021, 42(8): 14-27. | 
																													
																						|  | WANG Y Q. Fixed-wing carrier-based aircraft: Key technologies and future development[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 14-27. | 
																													
																						| 9 | 赵芳, 王太江, 陈钦, 等. 压缩空气弹射在武器系统中的应用综述[J]. 现代防御技术, 2021, 49(5): 95-103. | 
																													
																						|  | ZHAO F, WANG T J, CHEN Q, et al. Brief review of compressed-gas ejection application in weapon system[J]. Modern Defense Technology, 2021, 49(5): 95-103. | 
																													
																						| 10 | 《世界无人系统大全》编写组. 世界无人机大全[M]. 北京: 航空工业出版社, 2004. | 
																													
																						|  | The World's Complete Collection of Unmanned Systems. World UAVs complete collection[M]. Beijing: Aviation Industry Press, 2004. | 
																													
																						| 11 | 方九如. 超近程防御系统压缩空气发射装置分析[D]. 南京: 南京理工大学, 2014. | 
																													
																						|  | FANG J R. Analysis of compressed air launcher in ultra-short-range defense system[D]. Nanjing: Nanjing University of Science and Technology, 2014. | 
																													
																						| 12 | 丛龙腾. 大口径火箭弹冷发射流固耦合仿真研究[D]. 南京: 南京理工大学, 2015. | 
																													
																						|  | CONG L T. Simulation study on fluid-solid coupling of cold launch of large caliber rocket[D]. Nanjing: Nanjing University of Science and Technology, 2015. | 
																													
																						| 13 | 李军, 胡亚, 丛龙腾, 等. 能量因素对压缩空气弹射内弹道性能影响研究[J]. 航空兵器, 2016, 23(3): 71-74. | 
																													
																						|  | LI J, HU Y, CONG L T, et al. Study on the influence of energy factors on the interior ballistic performance of compressed air ejection[J]. Aero Weaponry, 2016, 23(3): 71-74. | 
																													
																						| 14 | 谢磊, 高钦和, 邵亚军. 压缩空气弹射内弹道影响因素作用规律研究[J]. 火力与指挥控制, 2019, 44(3): 116-119. | 
																													
																						|  | XIE L, GAO Q H, SHAO Y J. Analysis of factors to compressed air ejection interior ballistic based on FLUENT[J]. Fire Control & Command Control, 2019, 44(3): 116-119. | 
																													
																						| 15 | 李博平, 李国庆, 张笈玮, 等. 压缩空气弹射系统内弹道特性[J]. 兵工学报, 2021, 42(12): 2606-2616. | 
																													
																						|  | LI B P, LI G Q, ZHANG J W, et al. Interior ballistic characteristics of compressed air ejection system[J]. Acta Armamentarii, 2021, 42(12): 2606-2616. | 
																													
																						| 16 | 范奥博. 基于压缩空气弹射的单兵筒式武器研究[D]. 郑州: 郑州大学, 2019. | 
																													
																						|  | FAN A B. Research on individual barrel weapon based on compressed air ejection[D]. Zhengzhou: Zhengzhou University, 2019. | 
																													
																						| 17 | REN J, ZHONG J L, YAO L, et al. Experimental investigation and theoretical modelling of a high-pressure pneumatic catapult considering dynamic leakage and convection[J]. Entropy, 2020, 22(9): 1010. | 
																													
																						| 18 | 徐张宝. 高压气动弹射过程控制研究[D]. 南京: 南京理工大学, 2018. | 
																													
																						|  | XU Z B. Study on control of high pressure pneumatic ejection process[D]. Nanjing: Nanjing University of Science and Technology, 2018. | 
																													
																						| 19 | 李德庚, 周明, 黄迟, 等. 无人机气压弹射起飞动力学仿真分析[J]. 机械工程师, 2020(12): 96-99. | 
																													
																						|  | LI D G, ZHOU M, HUANG C, et al. Dynamic simulation and analysis on pneumatic catapult-assisted take-off of UAV[J]. Mechanical Engineer, 2020(12): 96-99. | 
																													
																						| 20 | 张钊. 气动弹射系统设计与批量化弹射方案研究[D]. 南京: 南京航空航天大学, 2020. | 
																													
																						|  | ZHANG Z. Design of pneumatic ejection system and research on batch ejection scheme[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020. | 
																													
																						| 21 | 黄国勤, 罗莎祁, 于今. 小型无人机气动肌腱式弹射系统动态仿真与优化[J]. 中国机械工程, 2019, 30(4): 448-454. | 
																													
																						|  | HUANG G Q, LUO S Q, YU J. Dynamic simulation and optimization of pneumatic tendon ejection systems for small UAVs[J]. China Mechanical Engineering, 2019, 30(4): 448-454. | 
																													
																						| 22 | 李士军, 汪长波, 杨巍, 等. 楔形轨道气压弹射装置轨道加速段设计方法研究[J]. 南京理工大学学报(自然科学版), 2020, 44(5): 517-523. | 
																													
																						|  | LI S J, WANG C B, YANG W, et al. Design method of acceleration section track in pneumatic ejection device with wedge track[J]. Journal of Nanjing University of Science and Technology, 2020, 44(5): 517-523. | 
																													
																						| 23 | 罗江雪, 魏小辉, 张钊. 基于Ansys Workbench的某弹射架风振分析[J]. 航空计算技术, 2020, 50(6): 27-29, 33. | 
																													
																						|  | LUO J X, WEI X H, ZHANG Z. Random vibration analysis of an UAV launcher under wind load by ansys workbench[J]. Aeronautical Computing Technique, 2020, 50(6): 27-29, 33. | 
																													
																						| 24 | 中科院工程热物理所在压缩空气弹射研究方面取得重要进展[J]. 高科技与产业化, 2021, 27(1): 69. | 
																													
																						| 25 | 王洪伟. 我所理解的流体力学[M]. 北京: 国防工业出版社, 2014. | 
																													
																						|  | WANG H W. Fluid mechanics as I understand it[M]. Beijing: National Defense Industry Press, 2014. | 
																													
																						| 26 | ZHANG X J, XU Y J, XU J, et al. Study on the performance and optimization of a scroll expander driven by compressed air[J]. Applied Energy, 2017, 186: 347-358. | 
																													
																						| 27 | 蔡茂林. 现代气动技术理论与实践第一讲: 气动元件的流量特性[J]. 液压气动与密封, 2007, 27(2): 44-48. | 
																													
																						| 28 | 刘南宏. 无人机压缩空气弹射系统研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2021. | 
																													
																						|  | LIU N H. Research on UAV compressed air ejection system[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2021. |