1 |
陈海生, 刘畅, 徐玉杰, 等. 储能在碳达峰碳中和目标下的战略地位和作用[J]. 储能科学与技术, 2021, 10(5): 1477-1485.
|
|
CHEN H S, LIU C, XU Y J, et al. The strategic position and role of energy storage under the goal of carbon peak and carbon neutrality[J]. Energy Storage Science and Technology, 2021, 10(5): 1477-1485.
|
2 |
何京东, 曹大泉, 段晓男, 等. 发挥国家战略科技力量作用, 为"双碳"目标提供有力科技支撑[J]. 中国科学院院刊, 2022, 37(4): 415-422.
|
|
HE J D, CAO D Q, DUAN X N, et al. Give full play to national strategic S & T force to provide vigorous support for carbon peak and carbon neutrality goals[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 415-422.
|
3 |
郑琼, 江丽霞, 徐玉杰, 等. 碳达峰、碳中和背景下储能技术研究进展与发展建议[J]. 中国科学院院刊, 2022, 37(4): 529-540.
|
|
ZHENG Q, JIANG L X, XU Y J, et al. Research progress and development suggestions of energy storage technology under background of carbon peak and carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 529-540.
|
4 |
朱汉雄, 王一, 茹加, 等. "双碳"目标下推动能源技术区域综合示范的路径思考[J]. 中国科学院院刊, 2022, 37(4): 559-566.
|
|
ZHU H X, WANG Y, RU J, et al. Thoughts on regional path of promoting comprehensive demonstration of low-carbon energy technology under"dual carbon"Goals[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 559-566.
|
5 |
KITTNER N, LILL F, KAMMEN D M. Energy storage deployment and innovation for the clean energy transition[J]. Nature Energy, 2017, 2(9): 1-6.
|
6 |
U.S. Department of Energy. Energy storage grand challenge: Energy storage market report[R]. Washington: 2020.
|
7 |
陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展[J]. 储能科学与技术, 2022, 11(3): 1052-1076.
|
|
CHEN H S, LI H, MA W T, et al. Research progress of energy storage technology in China in 2021[J]. Energy Storage Science and Technology, 2022, 11(3): 1052-1076.
|
8 |
ANEKE M, WANG M H. Energy storage technologies and real life applications-A state of the art review[J]. Applied Energy, 2016, 179: 350-377.
|
9 |
OLABI A G, WILBERFORCE T, RAMADAN M, et al. Compressed air energy storage systems: Components and operating parameters-A review[J]. Journal of Energy Storage, 2021, 34: doi: 10.1016/j.est.2020.102000.
|
10 |
BUDT M, WOLF D, SPAN R, et al. A review on compressed air energy storage: Basic principles, past milestones and recent developments[J]. Applied Energy, 2016, 170: 250-268.
|
11 |
杜鹏, 崔浩杰. 压缩空气储能商业电站在山东肥城并网[N]. 国家电网报, 2021-08-09(003). doi: 10.28266/n.cnki.ngjdw.2021.002847.
|
12 |
郗向丽. 助力双碳目标, 压缩空气储能正当时——专访中储国能(北京)技术有限公司CEO纪律先生[J]. 储能科学与技术, 2021, 10(3): 1215-1218.
|
13 |
李扬, 张新敬, 宋健斐, 等. 压缩空气储能系统释能过程动态调控[J]. 储能科学与技术, 2021, 10(5): 1514-1523.
|
14 |
ZHANG L, ZHENG Z, ZHANG Q, et al. Study of rotating stall in a centrifugal compressor with wide vaneless diffuser[J]. Journal of Thermal Science, 2020, 29(3): 743-752.
|
15 |
郭欢, 徐玉杰, 张新敬, 等. 蓄热式压缩空气储能系统变工况特性[J]. 中国电机工程学报, 2019, 39(5): 1366-1377.
|
|
GUO H, XU Y J, ZHANG X J, et al. Off-design performance of compressed air energy storage system with thermal storage[J]. Proceedings of the CSEE, 2019, 39(5): 1366-1377.
|
16 |
HAN Z H, GUO S C. Investigation of operation strategy of combined cooling, heating and power(CCHP) system based on advanced adiabatic compressed air energy storage[J]. Energy, 2018, 160: 290-308.
|
17 |
GUO Z G, DENG G Y, FAN Y C, et al. Performance optimization of adiabatic compressed air energy storage with ejector technology[J]. Applied Thermal Engineering, 2016, 94: 193-197.
|