| 1 | 陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展[J]. 储能科学与技术, 2022, 11(3): 1052-1076. | 
																													
																						|  | CHEN H S, LI H, MA W T, et al. Research progress of energy storage technology in China in 2021[J]. Energy Storage Science and Technology, 2022, 11(3): 1052-1076. | 
																													
																						| 2 | TER-GAZARIAN A. Energy storage for power systems[M]. Stevenage: IET, 1994. | 
																													
																						| 3 | 程浙武. 低温绝热压缩空气储能系统变工况性能分析及设计优化研究[D]. 杭州: 浙江大学, 2019. | 
																													
																						|  | CHENG Z W. Performance analysis and design optimization of low temperature adiabatic compressed air energy storage system under off-design conditions[D]. Hangzhou: Zhejiang University, 2019. | 
																													
																						| 4 | 刘文毅. 压缩空气蓄能(CAES)电站热力性能仿真分析[D]. 北京: 华北电力大学(北京), 2008. | 
																													
																						|  | LIU W Y. Simulation analysis of thermal performance of compressed air energy storage (CAES) power station[D]. Beijing: North China Electric Power University(Beijing), 2008. | 
																													
																						| 5 | 张远, 杨科, 李雪梅, 等. 先进绝热压缩空气储能的冷热电输出特性研究[J]. 热能动力工程, 2013, 28(2): 134-138, 215. | 
																													
																						|  | ZHANG Y, YANG K, LI X M, et al. Study on cold, heat and power output characteristics of advanced adiabatic compressed air energy storage[J]. Journal of Engineering for Thermal Energy and Power, 2013, 28(2): 134-138, 215. | 
																													
																						| 6 | 薛皓白, 张新敬, 陈海生, 等. 微型压缩空气储能系统释能过程分析[J]. 工程热物理学报, 2014, 35(10): 1923-1929. | 
																													
																						|  | XUE H B, ZHANG X J, CHEN H S, et al. Analysis of energy release process of micro-compressed air energy storage systems[J]. Journal of Engineering Thermophysics, 2014, 35(10): 1923-1929. | 
																													
																						| 7 | 梅生伟, 李瑞, 陈来军, 等. 先进绝热压缩空气储能技术研究进展及展望[J]. 中国电机工程学报, 2018, 38(10): 2893-2907, 3140. | 
																													
																						|  | MEI S W, LI R, CHEN L J, et al. An overview and outlook on advanced adiabatic compressed air energy storage technique[J]. Proceedings of the CSEE, 2018, 38(10): 2893-2907, 3140. | 
																													
																						| 8 | 田崇翼, 张承慧, 李珂, 等. 含压缩空气储能的微网复合储能技术及其成本分析[J]. 电力系统自动化, 2015, 39(10): 36-41. | 
																													
																						|  | TIAN C Y, ZHANG C H, LI K, et al. Composite energy storage technology with compressed air energy storage in microgrid and its cost analysis[J]. Automation of Electric Power Systems, 2015, 39(10): 36-41. | 
																													
																						| 9 | OLABI A G, WILBERFORCE T, RAMADAN M, et al. Compressed air energy storage systems: Components and operating parameters-A review[J]. Journal of Energy Storage, 2021, 34: doi: 10.1016/j.est.2020.102000. | 
																													
																						| 10 | SUN A Q, WANG J D, CHEN G Q, et al. Study on effects of inlet resistance on the efficiency of scroll expander in micro-compressed air energy storage system[J]. Energies, 2020, 13(18): doi: 10.3390/en13184617. | 
																													
																						| 11 | AL JUBORI A M, JAWAD Q A. Investigation on performance improvement of small scale compressed-air energy storage system based on efficient radial-inflow expander configuration[J]. Energy Conversion and Management, 2019, 182: 224-239. | 
																													
																						| 12 | RICE A T, LI P Y, SANCKENS C J. Optimal efficiency-power tradeoff for an air compressor/expander[J]. Journal of Dynamic Systems, Measurement, and Control, 2018, 140(2): doi: 10.1115/1.4037652. | 
																													
																						| 13 | WIEBERDINK J, LI P Y, SIMON T W, et al. Effects of porous media insert on the efficiency and power density of a high pressure (210 bar) liquid piston air compressor/expander-An experimental study[J]. Applied Energy, 2018, 212: 1025-1037. | 
																													
																						| 14 | SADIQ G A, TOZER G, AL-DADAH R, et al. CFD simulations of compressed air two stage rotary Wankel expander-Parametric analysis[J]. Energy Conversion and Management, 2017, 142: 42-52. | 
																													
																						| 15 | RAHBAR K, MAHMOUD S, AL-DADAH R K, et al. Development and experimental study of a small-scale compressed air radial inflow turbine for distributed power generation[J]. Applied Thermal Engineering, 2017, 116: 549-583. | 
																													
																						| 16 | CHEN S, ARABKOOHSAR A, ZHU T, et al. Development of a micro-compressed air energy storage system model based on experiments[J]. Energy, 2020, 197: doi: 10.1016/j.energy.2020. 117152. | 
																													
																						| 17 | VENKATARAMANI G, RAMAKRISHNAN E, SHARMA M R, et al. Experimental investigation on small capacity compressed air energy storage towards efficient utilization of renewable sources[J]. Journal of Energy Storage, 2018, 20: 364-370. | 
																													
																						| 18 | HÜTTERMANN L, SPAN R. Influence of the heat capacity of the storage material on the efficiency of thermal regenerators in liquid air energy storage systems[J]. Energy, 2019, 174: 236-245. | 
																													
																						| 19 | IGLESIAS A, FAVRAT D. Innovative isothermal oil-free co-rotating scroll compressor-expander for energy storage with first expander tests[J]. Energy Conversion and Management, 2014, 85: 565-572. | 
																													
																						| 20 | ZHANG X J, QIN C, XU Y J, et al. Integration of small-scale compressed air energy storage with wind generation for flexible household power supply[J]. Journal of Energy Storage, 2021, 37: doi: 10.1016/j.est.2021.102430. |