1 |
ANDERSEN P H, MATHEWS J A, RASK M. Integrating private transport into renewable energy policy: The strategy of creating intelligent recharging grids for electric vehicles[J]. Energy Policy, 2009, 37(7): 2481-2486.
|
2 |
胡建成. 我国纯电动汽车发展概况及展望[J]. 南方农机, 2020, 51(22): 126-127.
|
3 |
冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016.
|
|
FENG X N. Mechanism, modeling, prevention and control of thermal runaway of automotive lithium-ion power battery[D]. Beijing: Tsinghua University, 2016.
|
4 |
王芳, 林春景, 刘磊, 等. 动力电池安全性的测试与评价[J]. 储能科学与技术, 2018, 7(6): 967-971.
|
|
WANG F, LIN C J, LIU L, et al. Test and evaluation on safety of power batteries[J]. Energy Storage Science and Technology, 2018, 7(6): 967-971.
|
5 |
FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267.
|
6 |
LARSSON F, ANDERSON J, ANDERSSON P, et al. Thermal modelling of cell-to-cell fire propagation and cascading thermal runaway failure effects for lithium-ion battery cells and modules using fire walls[J]. Journal of the Electrochemical Society, 2016, 163(14): doi: 10.1149/2.0131614jes.
|
7 |
WANG Z, WANG J. Investigation of external heating-induced failure propagation behaviors in large-size cell modules with different phase change materials[J]. Energy, 2020, 204: doi: 10.1016/j.energy.2020.117946.
|
8 |
ZHANG W C, LIANG Z C, YIN X X, et al. Avoiding thermal runaway propagation of lithium-ion battery modules by using hybrid phase change material and liquid cooling[J]. Applied Thermal Engineering, 2021, 184: doi: 10.1016/j.applthermaleng.2020.116380.
|
9 |
ZHONG G B, LI H, WANG C, et al. Experimental analysis of thermal runaway propagation risk within 18650 lithium-ion battery modules[J]. Journal of the Electrochemical Society, 2018, 165(9): doi: 10.1149/2.0461809jes.
|
10 |
LOPEZ C F, JEEVARAJAN J A, MUKHERJEE P P. Experimental analysis of thermal runaway and propagation in lithium-ion battery modules[J]. Journal of the Electrochemical Society, 2015, 162(9): doi: 10.1149/2.0921509jes.
|
11 |
WILKE S, SCHWEITZER B, KHATEEB S, et al. Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: An experimental study[J]. Journal of Power Sources, 2017, 340: 51-59.
|
12 |
WENG J W, XIAO C R, OUYANG D X, et al. Mitigation effects on thermal runaway propagation of structure-enhanced phase change material modules with flame retardant additives[J]. Energy, 2022, 239: doi: 10.1016/j.energy.2021.122087.
|
13 |
WENG J W, OUYANG D X, YANG X Q, et al. Alleviation of thermal runaway propagation in thermal management modules using aerogel felt coupled with flame-retarded phase change material[J]. Energy Conversion and Management, 2019, 200: doi: 10.1016/j.enconman.2019.112071.
|
14 |
国家质量监督检验检疫总局, 中国国家标准化管理委员会. 信息与文献 参考文献著录规则: GB/T 7714—2015[S]. 北京: 中国标准出版社, 2015.
|
|
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Information and documentation—Rules for bibliographic references and citations to information resources: GB/T 7714—2015[S]. Beijing: Standards Press of China, 2015.
|
15 |
赵春朋. 受限空间三元锂离子电池热失控燃爆危险性研究[D]. 合肥: 中国科学技术大学, 2021.
|
|
ZHAO C P. Study on the risk of thermal runaway explosion of ternary lithium ion battery in confined space[D]. Hefei: University of Science and Technology of China, 2021.
|
16 |
李煌. 三元锂离子电池热失控传播及阻隔机制研究[D]. 合肥: 中国科学技术大学, 2020.
|
|
LI H. Study on thermal runaway propagation and blocking mechanism of ternary lithium ion battery[D]. Hefei: University of Science and Technology of China, 2020.
|