储能科学与技术 ›› 2023, Vol. 12 ›› Issue (6): 1862-1871.doi: 10.19799/j.cnki.2095-4239.2023.0043

• 储能系统与工程 • 上一篇    下一篇

三元锂离子电池组热失控阻隔及其传热特性实验研究

申锡江(), 段强领(), 秦鹏, 王青松, 孙金华   

  1. 中国科学技术大学,安徽 合肥 230031
  • 收稿日期:2023-01-31 修回日期:2023-02-20 出版日期:2023-06-05 发布日期:2023-06-21
  • 通讯作者: 段强领 E-mail:sxj1999@mail.ustc.edu.cn;duanql@ustc.edu.cn
  • 作者简介:申锡江(1999—),男,硕士研究生,研究方向为锂离子电池热管理及热失控抑制,E-mail:sxj1999@mail.ustc.edu.cn
  • 基金资助:
    国家重点研发计划(2021YFB2402001);国家自然科学基金(U2033204);合肥自然科学基金(2022019);中央高校基本科研业务费专项资金(WK5290000003)

Experimental study on thermal runaway mitigation and heat transfer characteristics of ternary lithium-ion batteries

Xijiang SHEN(), Qiangling DUAN(), Peng QIN, Qingsong WANG, Jinhua SUN   

  1. University of Science and Technology of China, Hefei 230031, Anhui, China
  • Received:2023-01-31 Revised:2023-02-20 Online:2023-06-05 Published:2023-06-21
  • Contact: Qiangling DUAN E-mail:sxj1999@mail.ustc.edu.cn;duanql@ustc.edu.cn

摘要:

为了预防锂离子电池组内热失控传播引起的火灾爆炸事故,有必要在电池组中采取热阻隔措施延缓热失控过程。本工作以4块40 Ah方形NCM三元锂离子电池组成的电池组为研究对象,研究了不同隔热夹层对电池组热失控传播行为及传热特性的影响。结果表明,电池间无隔热夹层时,4块电池均发生剧烈的热失控行为且传热迅速,诱发上游电池热失控30 s后,下游电池左侧温度已达到364.89 ℃,相邻电池间的热失控传播平均用时仅为99.33 s;在采用6 mm厚隔热棉和3 mm厚气凝胶作为隔热夹层时,热失控传播平均用时分别延长至644.33 s和1282.33 s;而采用6 mm气凝胶作为隔热夹层时,热失控传播过程被阻断。综合对隔热性能和电池组能量密度的考虑,本研究建议选择3 mm厚气凝胶作为电池组隔热材料。进一步建立了电池热失控过程中的传热计算模型,发现诱发电池热失控的热量有81.7%来自上游已发生热失控的电池,仅有18.3%源于电池自产热;本研究结果对锂离子电池模组的安全设计以及热失控传播阻隔材料的选择具有理论指导意义。

关键词: 锂离子电池, 热失控, 阻隔, 传热

Abstract:

It is required to exert thermal mitigation measures on batteries to delay the thermal runaway (TR) process and prevent fire and explosion accidents in lithium-ion battery packs, caused by TR propagation. Therefore, this study selected the 40 Ah square ternary lithium battery packs as the experimental object, in which the influence of inserting different heat mitigation plates between batteries on TR propagation and heat transfer characteristics was experimentally investigated. The experimental results show that the TR behavior and heat transfer rates of the batteries were severe and rapid, without any plates. The temperature of the left side of the downstream battery reached 364.89 ℃ after triggering the TR of the upstream battery for 30 s. The average interval time of TR propagation between adjacent batteries was 99.33 s. After inserting 6 mm thick cotton plates and 3 mm thick aerogel plates as mitigation interlayers, the average interval time was extended to 644.33 s and 1282.33 s, respectively. The TR process was entirely suppressed by inserting the 6 mm thick aerogel plates. Considering the battery pack's thermal mitigation performance and energy density, a 3 mm thick aerogel plate a suitable thermal mitigation material for this study. The calculation model of heat transfer in the TR process was established. The analysis showed that 81.7% of the TR-inducing heat came from upstream batteries where TR happened, whereas only 18.3% of the heat came from self-generation. The results of this study can provide theoretical guidance for the safe design of lithium-ion battery modules and the selection of TR mitigation materials.

Key words: lithium-ion batteries, thermal runaway, mitigation, heat transfer

中图分类号: