储能科学与技术 ›› 2023, Vol. 12 ›› Issue (5): 1636-1654.doi: 10.19799/j.cnki.2095-4239.2023.0052
李金涛1(), 牟粤2,3, 王静1(), 邱景义3, 明海3()
收稿日期:
2023-02-06
修回日期:
2023-03-01
出版日期:
2023-05-05
发布日期:
2023-05-29
通讯作者:
王静,明海
E-mail:leejt99@163.com;jwang6027@ysu.edu.cn;hai.mingenergy@ hotmail.com
作者简介:
李金涛(1999—),男,硕士研究生,研究方向为锂电池正极材料电化学,E-mail:leejt99@163.com;
基金资助:
Jintao LI1(), Yue MU2,3, Jing WANG1(), Jingyi QIU3, Hai MING3()
Received:
2023-02-06
Revised:
2023-03-01
Online:
2023-05-05
Published:
2023-05-29
Contact:
Jing WANG, Hai MING
E-mail:leejt99@163.com;jwang6027@ysu.edu.cn;hai.mingenergy@ hotmail.com
摘要:
高镍正极材料拥有容量高、稳定性好、成本较低以及环境友好等优点,是未来开发高比容量锂离子电池的关键正极材料之一。同时,为获得更高可逆容量以进一步提升电池的比容量,增加材料本体中的Ni元素含量是常用、也被广泛认可的技术手段。不过,随着材料中镍的提升,也带来了诸多问题,诸如阳离子混排程度上升,表-界面副反应活性增多,热稳定性下降,晶体容易出现裂纹并迅速蔓延扩散,以及在空气中容易生成残余锂化合物等。在这些负面诱因的共同作用下,高镍正极材料面临着使用环境要求较高、循环过程中易发生结构破坏以及造成的安全性等问题,阻碍了其进一步推广应用。基于上述考虑,本文梳理了近些年用于稳定高镍正极材料的改性方法,综合分析了各方法的特性及研究现状,经分析认为,后续在锂离子电池高镍正极研发改性的过程中,应从原有改性策略出发,进行更小尺度、更精细化地结构优化,针对电芯的不同应用场景进行材料微观结构的定制化改性,全面实现高镍正极材料的各项性能提升。
中图分类号:
李金涛, 牟粤, 王静, 邱景义, 明海. 高镍正极材料的稳定改性方法研究综述[J]. 储能科学与技术, 2023, 12(5): 1636-1654.
Jintao LI, Yue MU, Jing WANG, Jingyi QIU, Hai MING. Investigation of the structural evolution and interface behavior in cathode materials for Li-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(5): 1636-1654.
表2
近年研究中的几种不同离子掺杂应用"
掺杂离子 | 半径/Å | 电压/V | 电流密度/C | 比容量/(mAh/g) | 电流密度/C | 循环性能 | 文献 | ||
---|---|---|---|---|---|---|---|---|---|
掺杂后 | 掺杂前 | ||||||||
掺杂后 | 掺杂前 | ||||||||
Mg2+ | 0.72 | 4.5 | 1 | 199.7 | 201.8 | 1 | 87.2%@200th | 74%@200th | 2020[ |
Ga3+ | 0.76 | 4.3 | 0.1 | 246.8 | 233.2 | 0.5 | 90.1%@100th | 68.5%@100th | 2022[ |
Zr4+ | 0.72 | 4.4 | 0.1 | 225.2 | 230.1 | 0.3 | 83%@100th | 68%@100th | 2021[ |
F- | 1.33 | — | — | — | — | 0.5 | 96.8%@100th | 60.7%@100th | 2021[ |
S2- | 1.84 | 4.5 | 0.05 | 270.5 | 261.3 | 0.5 | 81.10%@600th | 65.78%@200th | 2019[ |
表3
近年研究中几种不同包覆材料的典型应用"
类型 | 包覆材料 | 电流密度/C | 电压/V | 容量/(mAh/g) | 循环性能 | 文献 | |||
---|---|---|---|---|---|---|---|---|---|
包覆后 | 包覆前 | 包覆后 | 包覆前 | ||||||
盐类 | LiPON | 0.5 | 4.2 | 174.9 | 176.7 | 97.5%@100th | 94.3%@100th | 2022[ | |
盐类 | LiTaO3 | 0.1 | 4.3 | 207.9 | 207.4 | 80.3%@150th 60 ℃ | <50%@70th 60 ℃ | 2022[ | |
聚合物 | PEDOT | 0.1 | 4.3 | 202 | 198 | 88.7%@100th | 66.3%@100th | 2019[ | |
聚合物 | PEG+PANI | 0.1 | 4.5 | 158 | 153 | 88%@100th | 59%@100th | 2022[ | |
氧化物 | TiO2 | 1 | 4.4 | 168.7 | 177.2 | 96%@200th | 78%@200th | 2020[ | |
氧化物 | V2O5 | 0.2 | 4.3 | 210.4 | 196.6 | 83.4%@100th | 71.4%@100th | 2022[ |
1 | LI M, LU J, CHEN Z W, et al. 30 years of lithium-ion batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2018: doi: 10.1002/adma.201800561. |
2 | CHANG L, WEI A, LUO S, et al. Lithium‐ion battery: A comprehensive research progress of high nickel ternary cathode material[J]. International Journal of Energy Research, 2022, 46(15): 23145-23172. |
3 | GOODENOUGH J B. Evolution of strategies for modern rechargeable batteries[J]. Accounts of Chemical Research, 2013, 46(5): 1053-1061. |
4 | LI J Y, LIN C, WENG M Y, et al. Structural origin of the high-voltage instability of lithium cobalt oxide[J]. Nature Nanotechnology, 2021, 16(5): 599-605. |
5 | MANTHIRAM A, GOODENOUGH J B. Layered lithium cobalt oxide cathodes[J]. Nature Energy, 2021, 6(3): 323. |
6 | MALIK M, CHAN K H, AZIMI G. Review on the synthesis of LiNixMnyCo1- x- yO2 (NMC) cathodes for lithium-ion batteries[J]. Materials Today Energy, 2022, 28: 101066. |
7 | JIANG M, DANILOV D L, EICHEL R A, et al. A review of degradation mechanisms and recent achievements for Ni‐rich cathode‐based Li‐ion batteries[J]. Advanced Energy Materials, 2021, 11 (48): 10.1002/aenm.202103005. |
8 | ZHENG J X, YE Y K, LIU T C, et al. Ni/Li disordering in layered transition metal oxide: Electrochemical impact, origin, and control[J]. Accounts of Chemical Research, 2019, 52(8): 2201-2209. |
9 | YOUNGJIN K, HYOJU P, WARNER JAMIE H, et al. Unraveling the intricacies of residual lithium in high-Ni cathodes for lithium-ion batteries[J]. Acs Energy Letters, 2021, 6(3): 941-948. |
10 | LIANG L, ZHANG W, ZHAO F, et al. Surface/interface structure degradation of Ni‐rich layered oxide cathodes toward lithium‐ion batteries: Fundamental mechanisms and remedying strategies[J]. Advanced Materials Interfaces, 2019, 7(3): https://doi.org/10.1002/admi.201901749. |
11 | LI H H, YABUUCHI N, MENG Y S, et al. Changes in the cation ordering of layered O3 LixNi0.5Mn0.5O2 during electrochemical cycling to high voltages: An electron diffraction study[J]. Chemistry of Materials, 2007, 19 (10): 2551-2565. |
12 | LIN F, MARKUS I M, NORDLUND D, et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries[J]. Nature Communications, 2014, 5: 3529. |
13 | KANG K, CEDER G. Factors that affect Li mobility in layered lithium transition metal oxides[J]. Physics Review B, 2006, doi:10.1103/physrevb.74.094105. |
14 | LEE J, URBAN A, LI X, et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries[J]. Science, 2014, 343(6170): 519-522. |
15 | CHENG C X, TAN L, LIU H W, et al. High rate performances of the cathode material LiNi1/3Co1/3Mn1/3O2 synthesized using low temperature hydroxide precipitation[J]. Materials Research Bulletin, 2011, 46(11): 2032-2035. |
16 | KONDRAKOV A O, SCHMIDT A, XU J, et al. Anisotropic lattice strain and mechanical degradation of high- and low-nickel NCM cathode materials for Li-ion batteries[J]. The Journal of Physical Chemistry C, 2017, 121(6): 3286-3294. |
17 | KOYAMA Y, ARAI H, TANAKA I, et al. High temperature defect chemistry in layered lithium transition-metal oxides based on first-principles calculations[J]. Journal of Power Sources, 2013, 244: 592-596. |
18 | BI Y J, YANG W C, DU R, et al. Correlation of oxygen non-stoichiometry to the instabilities and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 utilized in lithium ion battery[J]. Journal of Power Sources, 2015, 283: 211-218. |
19 | HUANG B, CHENG L, LI X Z, et al. Layered cathode materials: Precursors, synthesis, microstructure, electrochemical properties, and battery performance[J]. Small, 2022, 18(20): 2107697. |
20 | WANG L F, LIU G Y, DING X N, et al. Simultaneous coating and doping of a nickel-rich cathode by an oxygen ion conductor for enhanced stability and power of lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(37): 33901-33912. |
21 | TANG Z F, WANG S, LIAO J Y, et al. Facilitating lithium-ion diffusion in layered cathode materials by introducing Li+/Ni2+ antisite defects for high-rate Li-ion batteries[J]. Research (Washington, D C), 2019, 2019: 2198906. |
22 | YOON CHONG S, JAE C M, DO WOOK J, et al. Cation ordering of Zr-doped LiNiO2 cathode for lithium-ion batteries[J]. Chemistry of Materials, 2018, 30(5): 1808-1814. |
23 | LI X, ZHANG K J, WANG M S, et al. Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2[J]. Sustainable Energy & Fuels, 2018, 2(2): 413-421. |
24 | LIU W, OH P, LIU X E, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries[J]. Angewandte Chemie, 2015, 54(15): 4440-4457. |
25 | KONG D F, HU J T, CHEN Z F, et al. Ti-gradient doping to stabilize layered surface structure for high performance high-Ni oxide cathode of Li-ion battery[J]. Advanced Energy Materials, 2019, 9(41): 1901756. |
26 | LIU H S, ZHANG Z R, GONG Z L, et al. Origin of deterioration for LiNiO2 cathode material during storage in air[J]. Electrochemical and Solid-State Letters, 2004, 7(7): A190. |
27 | CHEN Z, NGUYEN H D, ZARRABEITIA M, et al. Lithium phosphonate functionalized polymer coating for high-energy Li[Ni0.8Co0.1Mn0.1]O2 with superior performance at ambient and elevated temperatures[J]. Advanced Functional Materials, 2021, 31(41): 2105343. |
28 | MARTINEZ A C, GRUGEON S, CAILLEU D, et al. High reactivity of the nickel-rich LiNi1- x- yMnxCoyO2 layered materials surface towards H2O/CO2 atmosphere and LiPF6-based electrolyte[J]. Journal of Power Sources, 2020, 468: 228204. |
29 | RENFREW S E, MCCLOSKEY B D. Residual lithium carbonate predominantly accounts for first cycle CO2 and CO outgassing of Li-stoichiometric and Li-rich layered transition-metal oxides[J]. Journal of the American Chemical Society, 2017, 139(49): 17853-17860. |
30 | ZHAO B, SI J, CAO C H, et al. Enhanced electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode by reducing lithium residue with low-temperature fluorination treatment[J]. Solid State Ionics, 2019, 339: 114998. |
31 | DOO S W, KIM K, KIM H, et al. Residual Li compounds-selective washing process for Ni-rich layered oxide cathode materials for Li-ion batteries[J]. Journal of the Electrochemical Society, 2021, 168(10): 100529. |
32 | YOU L Z, CHU B B, LI G X, et al. H3BO3 washed LiNi0.8Co0.1Mn0.1O2 with enhanced electrochemical performance and storage characteristics[J]. Journal of Power Sources, 2021, 482: 228940. |
33 | XU S, DU C Y, XU X, et al. A mild surface washing method using protonated polyaniline for Ni-rich LiNi0.8Co0.1Mn0.1O2 material of lithium ion batteries[J]. Electrochimica Acta, 2017, 248: 534-540. |
34 | XIONG X H, DING D, BU Y F, et al. Enhanced electrochemical properties of a LiNiO2-based cathode material by removing lithium residues with (NH4)2HPO4[J]. Journal of Materials Chemistry A, 2014, 2(30): 11691-11696. |
35 | LEE W, LEE S, LEE E, et al. Destabilization of the surface structure of Ni-rich layered materials by water-washing process[J]. Energy Storage Materials, 2022, 44: 441-451. |
36 | GU W, DONG Q Y, ZHENG L, et al. Ambient air stable Ni-rich layered oxides enabled by hydrophobic self-assembled monolayer[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1937-1943. |
37 | DOO S W, LEE S, KIM H, et al. Hydrophobic Ni-rich layered oxides as cathode materials for lithium-ion batteries[J]. ACS Applied Energy Materials, 2019, 2(9): 6246-6253. |
38 | MU Y, MING H, CHEN X F, et al. Molecular-scale hydrophobic modification of Ni-rich cathode materials toward superior critical endurability and environmental stability[J]. Advanced Sustainable Systems, 2022, 6(6): 2200002. |
39 | WU L J, NAM K W, WANG X J, et al. Structural origin of overcharge-induced thermal instability of Ni-containing layered-cathodes for high-energy-density lithium batteries[J]. Chemistry of Materials, 2011, 23(17): 3953-3960. |
40 | ZHANG S S. Problems and their origins of Ni-rich layered oxide cathode materials[J]. Energy Storage Materials, 2020, 24: 247-254. |
41 | XU C, MÄRKER K, LEE J H, et al. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries[J]. Nature Materials, 2021, 20(1): 84-92. |
42 | LI S, YAO Z P, ZHENG J M, et al. Direct observation of defect-aided structural evolution in a nickel-rich layered cathode[J]. Angewandte Chemie International Edition, 2020, 59(49): 22092-22099. |
43 | SUN Y K, MYUNG S T, KIM M H, et al. Synthesis and characterization of Li [(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries[J]. Journal of the American Chemical Society, 2005, 127(38): 13411-13418. |
44 | YOON S J, PARK K J, LIM B B, et al. Improved performances of Li[Ni0.65Co0.08Mn0.27]O2 cathode material with full concentration gradient for Li-ion batteries[J]. Journal of the Electrochemical Society, 2014, 162(2): A3059-A3063. |
45 | MU L Q, LIN R Q, XU R, et al. Oxygen release induced chemomechanical breakdown of layered cathode materials[J]. Nano Letters, 2018, 18(5): 3241-3249. |
46 | YAN P F, ZHENG J M, GU M, et al. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries[J]. Nature Communications, 2017, 8(1): 1-9. |
47 | RYU H H, PARK K J, YOON C S, et al. Capacity fading of Ni-rich Li[NixCoyMn1- x- y]O2 (0.6≤x≤0.95) cathodes for high-energy-density lithium-ion batteries: Bulk or surface degradation?[J]. Chemistry of Materials, 2018, 30(3): 1155-1163. |
48 | PARK K Y, ZHU Y Z, TORRES-CASTANEDO C G, et al. Elucidating and mitigating high-voltage degradation cascades in cobalt-free LiNiO2 lithium-ion battery cathodes[J]. Advanced Materials, 2022, 34(3): 2270026. |
49 | XIN H L, WANG C Y. In-situ imaging of electro-chemo-mechanical degradation of high-Ni content cathode materials[J]. Microscopy and Microanalysis, 2021, 27(S1): 2180. |
50 | XIANG J W, WEI Y, ZHONG Y, et al. Building practical high-voltage cathode materials for lithium-ion batteries[J]. Advanced Materials, 2022, 34(52): e2200912. |
51 | BROUSSELY M, BIENSAN P, SIMON B. Lithium insertion into host materials: The key to success for Li ion batteries[J]. Electrochimica Acta, 1999, 45(1/2): 3-22. |
52 | NOH H J, YOUN S, YOON C S, et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2013, 233: 121-130. |
53 | LEE E, MUHAMMAD S, KIM T, et al. Tracking the influence of thermal expansion and oxygen vacancies on the thermal stability of Ni-rich layered cathode materials[J]. Advanced Science, 2020, 7(12): 1902413. |
54 | BAK S M, NAM K W, CHANG W, et al. Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials[J]. Chemistry of Materials, 2013, 25(3): 337-351. |
55 | ZHENG J M, GU M, GENC A, et al. Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution[J]. Nano Letters, 2014, 14(5): 2628-2635. |
56 | LEE W, MUHAMMAD S, KIM T, et al. Rechargeable batteries: New insight into Ni-rich layered structure for next-generation Li rechargeable batteries[J]. Advanced Energy Materials, 2018, 8(4): 1870015. |
57 | WU F, TIAN J, SU Y, et al. Effect of Ni2+ content on lithium/nickel disorder for Ni-rich cathode materials[J]. ACS Applied Materials & Interfaces, 2015, 7 (14): 7702-8. |
58 | AISHOVA A, PARK G T, YOON C S, et al. Cobalt-free high-capacity Ni-rich layered Li[Ni0.9Mn0.1]O2 cathode[J]. Advanced Energy Materials, 2020, 10(4): 1903179. |
59 | YOON C S, RYU H H, PARK G T, et al. Extracting maximum capacity from Ni-rich Li[Ni0.95Co0.025Mn0.025]O2 cathodes for high-energy-density lithium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(9): 4126-4132. |
60 | NAKAYAMA M, KANAMORI K, NAKANO K, et al. Data-driven materials exploration for Li-ion conductive ceramics by exhaustive and informatics-aided computations[J]. The Chemical Record, 2019, 19(4): 771-778. |
61 | KIM M, KANG S, PARK H G, et al. Maximizing the energy density and stability of Ni-rich layered cathode materials with multivalent dopants via machine learning[J]. Chemical Engineering Journal, 2023, 452: 139254. |
62 | HAUTIER G, JAIN A, CHEN H L, et al. Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations[J]. Journal of Materials Chemistry, 2011, 21(43): 17147-17153. |
63 | MIN K, CHOI B, PARK K, et al. Machine learning assisted optimization of electrochemical properties for Ni-rich cathode materials[J]. Scientific Reports, 2018, 8(1): 1-7. |
64 | HUA W B, WU Z G, CHEN M Z, et al. Shape-controlled synthesis of hierarchically layered lithium transition-metal oxide cathode materials by shear exfoliation in continuous stirred-tank reactors[J]. Journal of Materials Chemistry A, 2017, 5(48): 25391-25400. |
65 | PARK G T, SUN H H, NOH T C, et al. Nanostructured Co-free layered oxide cathode that affords fast-charging lithium-ion batteries for electric vehicles[J]. Advanced Energy Materials, 2022, 12(48): 2202719. |
66 | ZHANG H, HE X Z, CHEN Z H, et al. Single-crystalline Ni-rich LiNixMnyCo1- x- yO2 cathode materials: A perspective[J]. Advanced Energy Materials, 2022, 12(45): 2270192. |
67 | XU X, ZHU H, TANG Y, et al. Spreading monoclinic boundary network between hexagonal primary grains for high performance Ni-rich cathode materials[J]. Nano Energy, 2022, 100: 107502. |
68 | SALEEM A, HUSSAIN A, ASHFAQ M Z, et al. A well-controlled cracks and gliding-free single-crystal Ni-rich cathode for long-cycle-life lithium-ion batteries[J]. Journal of Alloys and Compounds, 2022, 924: 166375. |
69 | LIU Y, WANG Q, CHEN L, et al. Diffusion-induced stress optimization by boosted surface Li-concentration for single-crystal Ni-rich layered cathodes[J]. Materials Today, 2022, 61: 40-53. |
70 | CAO B K, FANG H T, LI D, et al. Controlled synthesis of single-crystalline Ni-rich cathodes for high-performance lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(48): 53667-53676. |
71 | XU X, HUO H, JIAN J Y, et al. Lithium-ion batteries: Radially oriented single-crystal primary nanosheets enable ultrahigh rate and cycling properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries[J]. Advanced Energy Materials, 2019, 9(15): 1970051. |
72 | WANG L G, LIU T C, WU T P, et al. Strain-retardant coherent perovskite phase stabilized Ni-rich cathode[J]. Nature, 2022, 611(7934): 61-67. |
73 | SUN Y K, MYUNG S T, PARK B C, et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nature Materials, 2009, 8(4): 320-324. |
74 | SUN Y K, NOH H J, YOON C S. Effect of Mn content in surface on the electrochemical properties of core-shell structured cathode materials[J]. Journal of the Electrochemical Society, 2011, 159(1): A1-A5. |
75 | SUN Y K, KIM D H, JUNG H G, et al. High-voltage performance of concentration-gradient Li[Ni0.67Co0.15Mn0.18]O2 cathode material for lithium-ion batteries[J]. Electrochimica Acta, 2010, 55(28): 8621-8627. |
76 | MAENG S J, CHUNG Y, MIN S, et al. Enhanced mechanical strength and electrochemical performance of core-shell structured high-nickel cathode material[J]. Journal of Power Sources, 2020, 448: 227395. |
77 | KIM U H, RYU H H, KIM J H, et al. Concentration gradient cathodes: Microstructure-controlled Ni-rich cathode material by microscale compositional partition for next-generation electric vehicles[J]. Advanced Energy Materials, 2019, 9(15): 1970046. |
78 | PARK K J, CHOI M J, MAGLIA F, et al. High-capacity concentration gradient Li[Ni0.865Co0.120Al0.015]O2 cathode for lithium-ion batteries[J]. Advanced Energy Materials, 2018, 8(19): 1703612. |
79 | SUN Y K, CHEN Z H, NOH H J, et al. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nature Materials, 2012, 11(11): 942-947. |
80 | SUN Y K, LEE B R, NOH H J, et al. A novel concentration-gradient Li[Ni0.83Co0.07Mn0.10]O2 cathode material for high-energy lithium-ion batteries[J]. Journal of Materials Chemistry, 2011, 21(27): 10108-10112. |
81 | LEE E J, CHEN Z H, NOH H J, et al. Development of microstrain in aged lithium transition metal oxides[J]. Nano Letters, 2014, 14(8): 4873-4880. |
82 | FENG Z J, LIU Y L, QIAN R C, et al. Fabricating a thin gradient surface layer to enhance the cycle stability of Ni-rich cathode materials[J]. Journal of Alloys and Compounds, 2022, 893: 162162. |
83 | JIANG Y P, LIU Z H, ZHANG Y Z, et al. Full-gradient structured LiNi0.8Co0.1Mn0.1O2 cathode material with improved rate and cycle performance for lithium ion batteries[J]. Electrochimica Acta, 2019, 309: 74-85. |
84 | Luo D, Ding X, Hao X, et al. Ni/Mn and Al dual concentration-gradients to mitigate voltage decay and capacity fading of Li-rich layered cathodes[J]. ACS Energy Letters, 2021, 6 (8): 2755-2764. |
85 | SHANG M W, CHEN X, NIU J J. Nickel-rich layered LiNi0.8Mn0.1Co0.1O2 with dual gradients on both primary and secondary particles in lithium-ion batteries[J]. Cell Reports Physical Science, 2022, 3(2): 100767. |
86 | SHEN Y B, YAO X J, ZHANG J H, et al. Sodium doping derived electromagnetic center of lithium layered oxide cathode materials with enhanced lithium storage[J]. Nano Energy, 2022, 94: 106900. |
87 | KIM S B, KIM H, PARK D H, et al. Li-ion diffusivity and electrochemical performance of Ni-rich cathode material doped with fluoride ions[J]. Journal of Power Sources, 2021, 506: 230219. |
88 | LIU X L, WANG S, WANG L, et al. Stabilizing the high-voltage cycle performance of LiNi0.8Co0.1Mn0.1O2 cathode material by Mg doping[J]. Journal of Power Sources, 2019, 438: 227017. |
89 | ZHANG D K, LIU Y, WU L, et al. Effect of Ti ion doping on electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material[J]. Electrochimica Acta, 2019, 328: 135086. |
90 | SRIVASTAVA N, SINGH S K, MEGHNANI D, et al. Molybdenum-doped Li/Mn-rich layered transition metal oxide cathode material Li1.2Mn0.6Ni0.1Co0.1O2 with high specific capacity and improved cyclic stability for rechargeable Li-batteries[J]. ACS Applied Energy Materials, 2022, 5(10): 12183-12195. |
91 | YAN J Q, HUANG H, TONG J F, et al. Recent progress on the modification of high nickel content NCM: Coating, doping, and single crystallization[J]. Interdisciplinary Materials, 2022, 1(3): 330-353. |
92 | LI L N, HAN E S, ZHU L Z, et al. Effect of Zr doping and Al-Zr co-doping on LiNi0.5Co0.25Mn0.25O2 for lithium-ion batteries[J]. Solid State Ionics, 2020, 346: 115220. |
93 | HE T, LU Y, SU Y F, et al. Sufficient utilization of zirconium ions to improve the structure and surface properties of nickel-rich cathode materials for lithium-ion batteries[J]. ChemSusChem, 2018, 11(10): 1639-1648. |
94 | LI Q, LI Z, WU S J, et al. Utilizing diverse functions of zirconium to enhance the electrochemical performance of Ni-rich layered cathode materials[J]. ACS Applied Energy Materials, 2020, 3(12): 11741-11751. |
95 | LI J W, LI Y, GUO Y N, et al. A facile method to enhance electrochemical performance of high-nickel cathode material Li(Ni0.8Co0.1Mn0.1)O2 via Ti doping[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(13): 10702-10708. |
96 | LI G Y, HUANG Z L, ZUO Z C, et al. Understanding the trace Ti surface doping on promoting the low temperature performance of LiNi1/3Co1/3Mn1/3O2 cathode[J]. Journal of Power Sources, 2015, 281: 69-76. |
97 | PARK G T, RYU H H, PARK N Y, et al. Tungsten doping for stabilization of Li [Ni0.90Co0.05Mn0.05]O2 cathode for Li-ion battery at high voltage[J]. J Power Sources, 2019, 442. |
98 | RYU H H, PARK G T, YOON C S, et al. Suppressing detrimental phase transitions via tungsten doping of LiNiO2 cathode for next-generation lithium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(31): 18580-18588. |
99 | XIE Q, LI W D, MANTHIRAM A. A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density Li-ion batteries[J]. Chemistry of Materials, 2019, 31(3): 938-946. |
100 | LV Y T, CHENG X, QIANG W J, et al. Improved electrochemical performances of Ni-rich LiNi0.83Co0.12Mn0.05O2 by Mg-doping[J]. Journal of Power Sources, 2020, 450: 227718. |
101 | FENG Z, RAJAGOPALAN R, ZHANG S, et al. A three in one strategy to achieve zirconium doping, boron doping, and interfacial coating for stable LiNi0.8Co0.1Mn0.1O2 cathode[J]. Advanced Science, 2021, 8(2): 2001809. |
102 | DU R, BI Y J, YANG W C, et al. Improved cyclic stability of LiNi0.8Co0.1Mn0.1O2 via Ti substitution with a cut-off potential of 4.5 V[J]. Ceramics International, 2015, 41(5): 7133-7139. |
103 | ZHOU Q H, LIU W H, LV L, et al. Study on d0 transition metals doped Ni-rich cathode materials for Li-ion batteries: Insights from first-principles calculations[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656: 130421. |
104 | KIM U H, PARK G T, SON B K, et al. Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge[J]. Nature Energy, 2020, 5(11): 860-869. |
105 | QIU L, ZHANG M K, SONG Y, et al. Recent advance in structure regulation of high-capacity Ni-rich layered oxide cathodes[J]. EcoMat, 2021, 3(5): doi: 10.1002/eom2.12141. |
106 | WOO S U, PARK B C, YOON C S, et al. Improvement of electrochemical performances of Li[Ni0.8Co0.1Mn0.1]O2 cathode materials by fluorine substitution[J]. Journal of the Electrochemical Society, 2007, 154(7): A649. |
107 | ZHANG B, LI L J, ZHENG J C. Characterization of multiple metals (Cr, Mg) substituted LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery[J]. Journal of Alloys and Compounds, 2012, 520: 190-194. |
108 | ZHANG Z, HONG B, YI M Y, et al. In situ co-doping strategy for achieving long-term cycle stability of single-crystal Ni-rich cathodes at high voltage[J]. Chemical Engineering Journal, 2022, 445: 136825. |
109 | PENG F, CHU Y Q, LI Y, et al. Mg, Ti-base surface integrated layer and bulk doping to suppress lattice oxygen evolution of Ni-rich cathode material at a high cut-off voltage[J]. Journal of Energy Chemistry, 2022, 71: 434-444. |
110 | TANG H, FU W W, XIE T, et al. High performance of phosphorus and fluorine co-doped nickel-rich cathode material for lithium ion batteries[J]. Solid State Ionics, 2021, 361: 115550. |
111 | KO G, PARK S, KIM W, et al. Synergistic effect of Na and Al co-doping on the electrochemical properties of Li[Ni0.8Mn0.1Co0.1]O2 cathode materials for Li-ion batteries[J]. Journal of Alloys and Compounds, 2022, 925: 166678. |
112 | XU C L, XIANG W, WU Z G, et al. Constructing a protective pillaring layer by incorporating gradient Mn4+ to stabilize the surface/interfacial structure of LiNi0.815Co0.15Al0.035O2 cathode[J]. ACS Applied Materials & Interfaces, 2018, 10(33): 27821-27830. |
113 | QIU L, XIANG W, TIAN W, et al. Polyanion and cation co-doping stabilized Ni-rich Ni-Co-Al material as cathode with enhanced electrochemical performance for Li-ion battery[J]. Nano Energy, 2019, 63: 103818. |
114 | ZHAO Y, LIU J T, WANG S B, et al. Surface structural transition induced by gradient polyanion-doping in Li-rich layered oxides: Implications for enhanced electrochemical performance[J]. Advanced Functional Materials, 2016, 26(26): 4760-4767. |
115 | ZHANG R, WANG C Y, ZOU P C, et al. Compositionally complex doping for zero-strain zero-cobalt layered cathodes[J]. Nature, 2022, 610(7930): 67-73. |
116 | JAMIL S, YUE L, LI C M, et al. Significance of gallium doping for high Ni, low Co/Mn layered oxide cathode material[J]. Chemical Engineering Journal, 2022, 441: 135821. |
117 | JUNG C H, LI Q T, KIM D H, et al. Revisiting the role of Zr doping in Ni-rich layered cathodes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(32): 17415-17424. |
118 | SUN Z H, XU L Q, DONG C Q, et al. A facile gaseous sulfur treatment strategy for Li-rich and Ni-rich cathode materials with high cycling and rate performance[J]. Nano Energy, 2019, 63: 103887. |
119 | LIU W, LI X F, XIONG D B, et al. Significantly improving cycling performance of cathodes in lithium ion batteries: The effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2[J]. Nano Energy, 2018, 44: 111-120. |
120 | WANG W Z, WU L Y, LI Z W, et al. In situ tuning residual lithium compounds and constructing TiO2 coating for surface modification of a nickel-rich cathode toward high-energy lithium-ion batteries[J]. ACS Applied Energy Materials, 2020, 3(12): 12423-12432. |
121 | MO Y, GUO L J, JIN H F, et al. Improved cycling stability of LiNi0.6Co0.2Mn0.2O2 through microstructure consolidation by TiO2 coating for Li-ion batteries[J]. Journal of Power Sources, 2020, 448: 227439. |
122 | MAO G H, XIAO F M, ZENG L M, et al. Improvement of cycle performance of the high nickel cathode material LiNi0.88Co0.07Al0.05O2 for lithium-ion batteries by the spray drying of V2O5[J]. Journal of Alloys and Compounds, 2022, 892: 162161. |
123 | LEE K S, MYUNG S T, KIM D W, et al. AlF3-coated LiCoO2 and Li[Ni1/3Co1/3Mn1/3]O2 blend composite cathode for lithium ion batteries[J]. Journal of Power Sources, 2011, 196(16): 6974-6977. |
124 | SONG H G, KIM S B, PARK Y J. Enhanced electrochemical properties of Li[Ni0.5Co0.2Mn0.3]O2 cathode by surface coating using LaF3 and MgF2[J]. Journal of Electroceramics, 2012, 29(2): 163-169. |
125 | FENG Z, RAJAGOPALAN R, SUN D, et al. In-situ formation of hybrid Li3PO4-AlPO4-Al(PO3)3 coating layer on LiNi0.8Co0.1Mn0.1O2 cathode with enhanced electrochemical properties for lithium-ion battery[J]. Chemical Engineering Journal, 2020, 382: 122959. |
126 | LI W, YANG L S, LI Y J, et al. Ultra-thin AlPO4 layer coated LiNi0.7Co0.15Mn0.15O2 cathodes with enhanced high-voltage and high-temperature performance for lithium-ion half/full batteries[J]. Frontiers in Chemistry, 2020, 8: 597. |
127 | HU G R, ZHANG Z Y, LI T F, et al. In situ surface modification for improving the electrochemical performance of Ni-rich cathode materials by using ZrP2O7[J]. ChemSusChem, 2020, 13(6): 1603-1612. |
128 | MA Y, XU M, ZHANG J B, et al. Improving electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode for Li-ion batteries by dual-conductive coating layer of PPy and LiAlO2[J]. Journal of Alloys and Compounds, 2020, 848: 156387. |
129 | GAN Q M, QIN N, ZHU Y H, et al. Polyvinylpyrrolidone-induced uniform surface-conductive polymer coating endows Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced cyclability for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(13): 12594-12604. |
130 | SUN P P, DU F H, ZHOU Q, et al. Efficient preservation of surface state of LiNi0.82Co0.15Al0.03O2 through assembly of hydride terminated polydimethylsiloxane[J]. Journal of Power Sources, 2021, 495: 229761. |
131 | YANG S Y, SHADIKE Z, WANG W W, et al. An ultrathin solid-state electrolyte film coated on LiNi0.8Co0.1Mn0.1O2 electrode surface for enhanced performance of lithium-ion batteries[J]. Energy Storage Materials, 2022, 45: 1165-1174. |
132 | LEE H B, DINH HOANG T, BYEON Y S, et al. Surface stabilization of Ni-rich layered cathode materials via surface engineering with LiTaO3 for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(2): 2731-2741. |
133 | ZHANG Y X, KIM C S, SONG H W, et al. Ultrahigh active material content and highly stable Ni-rich cathode leveraged by oxidative chemical vapor deposition[J]. Energy Storage Materials, 2022, 48: 1-11. |
134 | DIAO H H, JIA M Y, ZHAO N, et al. LiNi0.6Co0.2Mn0.2O2 cathodes coated with dual-conductive polymers for high-rate and long-life solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(21): 24929-24937. |
135 | LI Y, LIU X, REN D S, et al. Toward a high-voltage fast-charging pouch cell with TiO2 cathode coating and enhanced battery safety[J]. Nano Energy, 2020, 71: 104643. |
136 | CHO W, KIM S M, SONG J H, et al. Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating[J]. Journal of Power Sources, 2015, 282: 45-50. |
137 | QIAN D N, XU B, CHO H M, et al. Lithium lanthanum titanium oxides: A fast ionic conductive coating for lithium-ion battery cathodes[J]. Chemistry of Materials, 2012, 24(14): 2744-2751. |
138 | CHEN H L, HE P, LI M, et al. Bifunctional sulfonated graphene-modified LiNi0.5Mn1.5O4 for long-life and high-energy-density lithium-ion batteries[J]. ACS Applied Energy Materials, 2021, 4(6): 5963-5972. |
139 | LEE S H, YOON C S, AMINE K, et al. Improvement of long-term cycling performance of Li[Ni0.8Co0.15Al0.05]O2 by AlF3 coating[J]. Journal of Power Sources, 2013, 234: 201-207. |
140 | SATTAR T, SIM S J, JIN B S, et al. Dual function Li-reactive coating from residual lithium on Ni-rich NCM cathode material for Lithium-ion batteries[J]. Scientific Reports, 2021, 11(1): 18590. |
141 | WU Y Q, MING H, LI M L, et al. New organic complex for lithium layered oxide modification: Ultrathin coating, high-voltage, and safety performances[J]. ACS Energy Letters, 2019, 4(3): 656-665. |
142 | CHEN S, HE T, SU Y F, et al. Ni-rich LiNi0.8Co0.1Mn0.1O2 oxide coated by dual-conductive layers as high performance cathode material for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(35): 29732-29743. |
143 | BAN H J, KIM M Y, PARK S J, et al. Electrochemical behavior of rutile phase TiO2-coated NCM materials for ASLBs operated at a high temperature[J]. Surface and Coatings Technology, 2022, 430: 127984. |
144 | MA B, HUANG X, LIU Z F, et al. Al2O3 coated single-crystalline hexagonal nanosheets of LiNi0.6Co0.2Mn0.2O2 cathode materials for the high-performance lithium-ion batteries[J]. Journal of Materials Science, 2022, 57(4): 2857-2869. |
145 | LUO Z Y, HU G R, WANG W G, et al. Enhancing the electrochemical performance of Co-less Ni-rich LiNi0.925Co0.03Mn0.045 O2 cathode material via Co-modification with Li2B4O7 coating and B3+ doping[J]. Journal of Power Sources, 2022, 548: 232092. |
146 | ZHANG C, LI T, XUE B, et al. Synergistic modification of Ni-rich full concentration gradient materials with enhanced thermal stability[J]. Chemical Engineering Journal, 2023, 451: 138518. |
147 | LV Y, HUANG S F, ZHAO Y F, et al. A review of nickel-rich layered oxide cathodes: Synthetic strategies, structural characteristics, failure mechanism, improvement approaches and prospects[J]. Applied Energy, 2022, 305: 117849. |
148 | JAMIL S, FASEHULLAH M, JABAR B, et al. Significantly fastened redox kinetics in single crystal layered oxide cathode by gradient doping[J]. Nano Energy, 2022, 94: 106961. |
149 | MO Y, GUO L J, JIN H F, et al. Building nickel-rich cathodes with large concentration gradient for high performance lithium-ion batteries[J]. Journal of Power Sources, 2020, 468: 228405. |
150 | SATTAR T, SIM S J, JIN B S, et al. Improving the cycle stability and rate performance of LiNi0.91Co0.06Mn0.03O2 Ni-rich cathode material by La2O3 coating for lithium-ion batteries[J]. Current Applied Physics, 2022, 36: 176-182. |
151 | TENG T, XIAO L, SHEN L, et al. Simultaneous Li2MoO4 coating and Mo6+ doping improves the structural stability and electrochemical properties of nickel-rich LiNi0.83Co0.11Mn0.06O2[J]. Applied Surface Science, 2022, 601: 154101. |
[1] | 李林泽, 张向文. 基于组合频率阻抗特征的锂离子电池健康状态估算[J]. 储能科学与技术, 2023, 12(5): 1705-1712. |
[2] | 刘家亮, 郭翠静, 汪奂伶. 基于火灾事故树模型的储能锂离子电池安全性检测方法与验证[J]. 储能科学与技术, 2023, 12(5): 1695-1704. |
[3] | 韩路豪, 王子阳, 何骁龙, 何春汕, 石晓龙, 姚斌. 细水雾释放策略对大容量三元锂离子电池热失控火灾抑制效果的实验研究[J]. 储能科学与技术, 2023, 12(5): 1664-1674. |
[4] | 李欣雨, 韩雪冰, 卢兰光, 李建秋, 欧阳明高. 基于大倍率电流脉冲的动力锂离子电池阻抗模型优化[J]. 储能科学与技术, 2023, 12(5): 1686-1694. |
[5] | 张吉栋, 杨展, 黄建国. 基于天然纤维素物质的C/TiO2/CuMoO4 微-纳结构复合纤维材料构筑及其电化学性能[J]. 储能科学与技术, 2023, 12(5): 1616-1624. |
[6] | 屈康康, 刘亚华, 洪叠, 沈兆曦, 韩效钊, 张旭. 中性水系有机液流电池正极电解质的研究进展[J]. 储能科学与技术, 2023, 12(5): 1570-1588. |
[7] | 王津, 张少飞, 孙金峰, 李田田. 纳米多孔合金快速燃烧氧化及高效储能研究[J]. 储能科学与技术, 2023, 12(5): 1480-1489. |
[8] | 赵玉文, 杨欢, 郭俊朋, 张毅, 孙琦, 张志佳. 磁性金属元素在钠离子电池中的应用[J]. 储能科学与技术, 2023, 12(5): 1332-1347. |
[9] | 周俊龙, 赵鲁康, 刘朝孟, 高宣雯, 骆文彬. 量子点及其复合材料作为碱金属离子电池负极的研究进展[J]. 储能科学与技术, 2023, 12(5): 1392-1408. |
[10] | 李尚倬, 龙禹彤, 刘朝孟, 高宣雯, 骆文彬. 钾离子电池聚阴离子正极材料的研究进展[J]. 储能科学与技术, 2023, 12(5): 1348-1363. |
[11] | 朱璟, 申晓宇, 岑官骏, 乔荣涵, 郝峻丰, 季洪祥, 田孟羽, 金周, 詹元杰, 武怿达, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2023.2.1—2023.3.31)[J]. 储能科学与技术, 2023, 12(5): 1553-1569. |
[12] | 董渊昌, 庞晓琼, 贾建芳, 史元浩, 温杰, 李笑, 张鑫. 基于SVD-SAE-GPR的锂离子电池RUL预测[J]. 储能科学与技术, 2023, 12(4): 1257-1267. |
[13] | 赵立禹, 孙桓五, 刘世闯, 闫志远. 重卡辅助动力电池加热系统能耗对比及优化[J]. 储能科学与技术, 2023, 12(4): 1139-1147. |
[14] | 成雪莉, 张维福, 罗城城, 袁小亚. 一步水热法制备三维石墨烯/Fe3O4 复合材料及其储锂性能[J]. 储能科学与技术, 2023, 12(4): 1066-1074. |
[15] | 黄渭彬, 张彪, 范金成, 杨伟, 邹汉波, 陈胜洲. ZIF-8复合PEO基固态电解质的制备与改性研究[J]. 储能科学与技术, 2023, 12(4): 1083-1092. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||