储能科学与技术 ›› 2023, Vol. 12 ›› Issue (8): 2444-2456.doi: 10.19799/j.cnki.2095-4239.2023.0112
李聪1,2(), 王桃1,2, 任延杰1,2, 周立波1, 陈荐1, 陈维1()
收稿日期:
2023-04-13
修回日期:
2023-04-23
出版日期:
2023-08-05
发布日期:
2023-08-23
通讯作者:
陈维
E-mail:liconghntu@csust.edu.cn;weichen@csust.edu.cn
作者简介:
李聪(1985—),男,博士,研究方向为动力设备材料特性及安全性评价,E-mail:liconghntu@csust.edu.cn;
基金资助:
Cong LI1,2(), Tao WANG1,2, Yanjie REN1,2, Libo ZHOU1, Jian CHEN1, Wei CHEN1()
Received:
2023-04-13
Revised:
2023-04-23
Online:
2023-08-05
Published:
2023-08-23
Contact:
Wei CHEN
E-mail:liconghntu@csust.edu.cn;weichen@csust.edu.cn
摘要:
熔融碳酸盐燃料电池(MCFC)是一种高效、可持续发电技术,其能源转换效率高、排放净化度高,是一种极具前途的发电技术。但是,由于其高工作温度和熔融碳酸盐电解质的特殊性质,MCFC的发展一直受到阻碍。其中,阴极溶解是一个严重的问题,会导致Ni短路等一系列问题,影响燃料电池的性能和寿命。本文综述了降低熔融碳酸盐燃料电池阴极溶解的策略,简述了近年来从替代材料、涂层改性和添加剂三个方面对阴极溶解的改善研究,探讨了替代NiO材料的方案不完全可行的问题,并提出了使用涂层技术来增强NiO阴极化学性能和降低阴极溶解度的可能性。涂层技术的优缺点也被详细列举,包括溶液浸渍电镀、溶胶-凝胶工艺和原子层沉积等一系列研究进展和性能。此外,本文还探讨了增加电解液碱度和向NiO中添加碱性氧化物来减少阴极溶解的方法,但也指出添加过多氧化物会降低电池性能的风险。综合分析表明,通过开发新型添加剂和涂层技术弥补合金作为阴极材料的性能缺陷,尝试制备新型复合材料等途径,有望获得高性能、低成本的阴极材料,从而实现MCFC的大规模商业化应用。
中图分类号:
李聪, 王桃, 任延杰, 周立波, 陈荐, 陈维. 熔融碳酸盐燃料电池阴极溶解与防护[J]. 储能科学与技术, 2023, 12(8): 2444-2456.
Cong LI, Tao WANG, Yanjie REN, Libo ZHOU, Jian CHEN, Wei CHEN. Cathodic dissolution and protection of molten carbonate fuel cells[J]. Energy Storage Science and Technology, 2023, 12(8): 2444-2456.
表1
研究人员为提高阴极性能采取的措施"
方法 | 材料 | 参考文献 | 评价/问题 |
---|---|---|---|
阴极材料替代 | LiFeO2 | [ | 电导率和催化活性较差 |
LiCoO2 | [ | 高制造成本、低机械强度 | |
LiFeO2-LiCoO2-NiO三元材料 | [ | 材料太脆、价格昂贵 | |
在NiO阴极中使用添加剂 | Co 20%(摩尔分数) | [ | 电荷转移电阻 |
Co 1.5%(摩尔分数) | [ | 低于NiO | |
Co3O4纳米粉末 | [ | ||
Ce/Co (9.5 %Co/5 % Ce) | [ | NiO阴极的孔隙率当量 | |
ZnO 2%(摩尔分数) | [ | 电荷转移电阻高于NiOZnO在熔体中溶解 | |
NiO阴极涂层 | MgO 8%(摩尔分数) | [ | 阴极极化增强 |
La 0.3%(质量分数) | [ | 降低电荷转移阻力 | |
Dy 1%(质量分数) | [ | 需要进一步的电化学测试 | |
LiMg0.05 Co0.95O2 | [ | 电导率高于裸NiO阴极 | |
LiCoO2,电化学恒电位沉积 | [ | 高电荷转移电阻 | |
5% CoO | [ | Co颗粒在Ni上的机械溶解 | |
LiCoO2PVA辅助溶胶-凝胶法 | [ | 与NiO相比提高了电压效率 | |
电镀LiCoO2 | [ | 与NiO相比提高了电压效率,但需要评估较高压力下的稳定性 | |
LSC溶胶-凝胶涂层 | [ | 较高的阴极过点位需要优化孔隙率 | |
Gd0.6Sr0.4CoO3 | [ | 有前途的涂层材料 | |
TiO2原子层沉积 | [ | 分析稳定性 | |
Co3O4原子层沉积 | [ | ||
CeO2原子层沉积 | [ | ||
Nb2O5原子层沉积 | [ | ||
镀银 | [ | 银成本太高 | |
金属泡沫载体 | [ | 工艺复杂 | |
LiNiO2颗粒 | [ | ||
添加剂对碳酸盐熔体的改性 | CaCO3 9%(摩尔分数) | [ | 添加剂的数量需要控制 |
BaCO3 9%(摩尔分数) | [ | ||
Y2O3 | [ | 负载下长期性能需要验证 | |
Gd2O3 | [ | ||
CeO2 | [ | 需研究锂化的控制 | |
La2O32% | [ | 缺少长期实验 | |
La | [ | 性能还需要补充 | |
Dy | [ |
1 | 葛睿彤, 郑艺华. 燃料电池传热传质分析进展综述[J]. 储能科学与技术, 2020, 9(1): 40-56. |
GE R T, ZHENG Y H. Summary of progress in heat and mass transfer analysis of fuel cells[J]. Energy Storage Science and Technology, 2020, 9(1): 40-56. | |
2 | 陈永珍, 韩颖, 宋文吉, 等. 绿氨能源化及氨燃料电池研究进展[J]. 储能科学与技术, 2023, 12(1): 111-119. |
CHEN Y Z, HAN Y, SONG W J, et al. Research progress of green ammonia energy and ammonia fuel cell[J]. Energy Storage Science and Technology, 2023, 12(1): 111-119. | |
3 | LEE C W, LEE M H, KANG M G, et al. Fabrication and operation characteristics of electrolyte impregnated matrix and cathode for molten carbonate fuel cells[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2018, 5(2): 279-286. |
4 | LEE K J, KIM T K, KOOMSON S, et al. Performance of molten carbonate fuel cell with Li-Na and Li-K carbonate electrolyte at extremely high-temperature condition[J]. Korean Journal of Chemical Engineering, 2018, 35(10): 2010-2014. |
5 | CZELEJ K, CWIEKA K, COLMENARES J C, et al. Catalytic activity of NiO cathode in molten carbonate fuel cells[J]. Applied Catalysis B: Environmental, 2018, 222: 73-75. |
6 | KANG M G, SONG S A, JANG S C, et al. Fabrication of electrolyte-impregnated cathode by dry casting method for molten carbonate fuel cells[J]. Korean Journal of Chemical Engineering, 2012, 29(7): 876-885. |
7 | DICKS A L. Molten carbonate fuel cells[J]. Current Opinion in Solid State and Materials Science, 2004, 8(5): 379-383. |
8 | JIANG S P, LI Q F. Molten carbonate fuel cells[M]// Introduction to Fuel Cells. Singapore: Springer, 2022: 673-693. |
9 | SHARAF O Z, ORHAN M F. An overview of fuel cell technology: Fundamentals and applications[J]. Renewable and Sustainable Energy Reviews, 2014, 32: 810-853. |
10 | SUNDMACHER K A, KIENLE H J, PESCH J F, et al. Molten carbonate fuel cells[M]. Weinheim, Germany: Wiley-VCH, 2007. |
11 | PACHAURI R K, CHAUHAN Y K. A study, analysis and power management schemes for fuel cells[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 1301-1319. |
12 | CASSIR M, MELÉNDEZ-CEBALLOS A, RINGUEDÉ A, et al. Molten carbonate fuel cells[M]//Compendium of Hydrogen Energy. Amsterdam: Elsevier, 2016: 71-87. |
13 | TANIMOTO K. Long-term operation of small sized single MCFCs[J]. Power Sources 1998,72: 77-82. |
14 | FAROOQUE M, YUH C, MARU H C. Carbonate fuel cell technology and materials[J]. MRS Bulletin, 2005, 30(8): 602-606. |
15 | BELHOMME C, DEVYNCK J, CASSIR M. New insight in the cyclic voltammetric behaviour of nickel in molten Li2CO3-Na2CO3 at 650 ℃[J]. Journal of Electroanalytical Chemistry, 2003, 545: 7-17. |
16 | MORITA H, KAWASE M, MUGIKURA Y, et al. Degradation mechanism of molten carbonate fuel cell based on long-term performance: Long-term operation by using bench-scale cell and post-test analysis of the cell[J]. Journal of Power Sources, 2010, 195(20): 6988-6996. |
17 | FRENI S, BARONE F, PUGLISI M. The dissolution process of the NiO cathodes for molten carbonate fuel cells: State-of-the-art[J]. International Journal of Energy Research, 1998, 22(1): 17-31. |
18 | LUNDBLAD A, SCHWARTZ S, BERGMAN B. Effect of sintering procedures in development of LiCoO2-cathodes for the molten carbonate fuel cell[J]. Journal of Power Sources, 2000, 90(2): 224-230. |
19 | GIORGI L, CAREWSKA M, PATRIARCA M, et al. Development and characterization of novel cathode materials for molten carbonate fuel cell[J]. Journal of Power Sources, 1994, 49(1/2/3): 227-243. |
20 | BERGMAN B, LAGERGREN C, LINDBERGH G, et al. Contact corrosion resistance between the cathode and current collector plate in the molten carbonate fuel cell[J]. Journal of the Electrochemical Society, 2001, 148(1): A38. |
21 | RINGUEDÉ A, WIJAYASINGHE A, ALBIN V, et al. Solubility and electrochemical studies of LiFeO2-LiCoO2-NiO materials for the MCFC cathode application[J]. Journal of Power Sources, 2006, 160(2): 789-795. |
22 | BLOOM I, LANAGAN M T, KRUMPELT M, et al. The development of LiFeO2-LiCoO2-NiO cathodes for molten carbonate fuel cells[J]. Journal of the Electrochemical Society, 1999, 146(4): 1336-1340. |
23 | WIJAYASINGHE A, BERGMAN B, LAGERGREN C. LiFeO2-LiCoO2-NiO cathodes for molten carbonate fuel cells[J]. Journal of the Electrochemical Society, 2003, 150(5): A558. |
24 | WIJAYASINGHE A, BERGMAN B, LAGERGREN C. LiFeO2-LiCoO2-NiO materials for Molten Carbonate Fuel Cell cathodes. Part Ⅰ: Powder synthesis and material characterization[J]. Solid State Ionics, 2006, 177(1/2): 165-173. |
25 | WIJAYASINGHE A, BERGMAN B, LAGERGREN C. LiFeO2-LiCoO2-NiO materials for Molten Carbonate Fuel Cell cathodes. Part Ⅱ. Fabrication and characterization of porous gas diffusion cathodes[J]. Solid State Ionics, 2006, 177(1/2): 175-184. |
26 | KUK S T, SONG Y S, KIM K. Properties of a new type of cathode for molten carbonate fuel cells[J]. Journal of Power Sources, 1999, 83(1/2): 50-56. |
27 | LI J, PU J, XIAO J-Z. Sol-gel LiCoO2 coated cathode for molten carbonate fuel cells[J]. Inorg Mater 2006,21: 420-426. |
28 | LEE H, HONG M Z, BAE S, et al. A novel approach to preparing nano-size Co3O4-coated Ni powder by the Pechini method for MCFC cathodes[J]. Journal of Materials Chemistry, 2003, 13(10): 2626-2632. |
29 | HAN J, KIM S G, YOON S P, et al. Performance of LiCoO2-coated NiO cathode under pressurized conditions[J]. Journal of Power Sources, 2002, 106(1/2): 153-159. |
30 | KIM S G, YOON S P, HAN J, et al. A stabilized NiO cathode prepared by sol-impregnation of LiCoO2 precursors for molten carbonate fuel cells[J]. Journal of Power Sources, 2002, 112(1): 109-115. |
31 | KUK S T, SONG Y S, SUH S, et al. The formation of LiCoO2 on a NiO cathode for a molten carbonate fuel cell using electroplating[J]. Journal of Materials Chemistry, 2001, 11(2): 630-635. |
32 | HONG M Z, BAE S C, LEE H S, et al. A study of the Co-coated Ni cathode prepared by electroless deposition for MCFCs[J]. Electrochimica Acta, 2003, 48(28): 4213-4221. |
33 | RYU B H, HAN J, YOON S P, et al. Dissolution behavior of Co-coated NiO cathode in molten (Li0.62K0.38)2CO3 eutectics[J]. Journal of Power Sources, 2004, 137(1): 62-70. |
34 | FUKUI T, OHARA S, OKAWA H, et al. Properties of NiO cathode coated with lithiated Co and Ni solid solution oxide for MCFCs[J]. Journal of Power Sources, 2000, 86(1/2): 340-346. |
35 | DURAIRAJAN A, COLON-MERCADO H, HARAN B L, et al. Electrochemical characterization of cobalt-encapsulated nickel as cathodes for MCFC[J]. Journal of Power Sources, 2002, 104(2): 157-168. |
36 | ESCUDERO M J, MENDOZA L, CASSIR M, et al. Porous nickel MCFC cathode coated by potentiostatically deposited cobalt oxide[J]. Journal of Power Sources, 2006, 160(2): 775-781. |
37 | MANSOUR C, PAUPORTÉ T, RINGUEDÉ A, et al. Protective coating for MCFC cathode: Low temperature potentiostatic deposition of CoOOH on nickel in aqueous media containing glycine[J]. Journal of Power Sources, 2006, 156(1): 23-27. |
38 | MENDOZA L, ALBIN V, CASSIR M, et al. Electrochemical deposition of Co3O4 thin layers in order to protect the nickel-based molten carbonate fuel cell cathode[J]. Journal of Electroanalytical Chemistry, 2003, 548: 95-107. |
39 | BRENSCHEIDT T, NITSCHKÉ F, SÖLLNER O, et al. Molten carbonate fuel cell research II. Comparing the solubility and the in-cell mobility of the nickel oxide cathode material in lithium/potassium and lithium/sodium carbonate melts[J]. Electrochimica Acta, 2001, 46(6): 783-797. |
40 | CASSIR M, MELÉNDEZ-CEBALLOS A, CHAVANNE M H, et al. ALD-processed oxides for high-temperature fuel cells[M]//Atomic Layer Deposition in Energy Conversion Applications. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017: 209-221. |
41 | PAOLETTI C, CAREWSKA M, PRESTI R L, et al. Performance analysis of new cathode materials for molten carbonate fuel cells[J]. Journal of Power Sources, 2009, 193(1): 292-297. |
42 | GANESAN P, COLON H, HARAN B L, et al. Performance of La0.8Sr0.2CoO3 coated NiO as cathodes for molten carbonate fuel cells[J]. Journal of Power Sources, 2003, 115(1): 12-18. |
43 | SOLER J, GONZÁLEZ T, ESCUDERO M J, et al. Endurance test on a single cell of a novel cathode material for MCFC[J]. Journal of Power Sources, 2002, 106(1/2): 189-195. |
44 | SONG S A, JANG S C, HAN J, et al. Enhancement of cell performance using a gadolinium strontium cobaltite coated cathode in molten carbonate fuel cells[J]. Journal of Power Sources, 2011, 196(23): 9900-9905. |
45 | MELÉNDEZ-CEBALLOS A, FERNÁNDEZ-VALVERDE S M, BARRERA-DÍAZ C, et al. TiO2 protective coating processed by Atomic Layer Deposition for the improvement of MCFC cathode[J]. International Journal of Hydrogen Energy, 2013, 38(30): 13443-13452. |
46 | MELÉNDEZ-CEBALLOS A, ALBIN V, FERNÁNDEZ-VALVERDE S M, et al. Electrochemical properties of Atomic layer deposition processed CeO2 as a protective layer for the molten carbonate fuel cell cathode[J]. Electrochimica Acta, 2014, 140: 174-181. |
47 | MELÉNDEZ-CEBALLOS A, ALBIN V, RINGUEDÉ A, et al. Electrochemical behavior of Mx-1Ox (M = Ti, Ce and Co) ultra-thin protective layers for MCFC cathode[J]. International Journal of Hydrogen Energy, 2014, 39(23): 12233-12241. |
48 | MELÉNDEZ-CEBALLOS A, FERNÁNDEZ-VALVERDE S M, ALBIN V, et al. Investigation on niobium oxide coatings for protecting and enhancing the performance of Ni cathode in the MCFC[J]. International Journal of Hydrogen Energy, 2016, 41(41): 18721-18731. |
49 | KIM D, LI H Y, LEE M H, et al. Improved performance and stability of low-temperature, molten-carbonate fuel cells using a cathode with atomic layer deposited ZrO2[J]. Journal of Power Sources, 2021, 484: 229254. |
50 | HAJ IBRAHIM S, WEJRZANOWSKI T, SOBCZAK P, et al. Insight into cathode microstructure effect on the performance of molten carbonate fuel cell[J]. Journal of Power Sources, 2021, 491: 229562. |
51 | WEJRZANOWSKI T, ĆWIEKA K, SKIBIŃSKI J, et al. Microstructure driven design of porous electrodes for molten carbonate fuel cell application: Recent progress[J]. International Journal of Hydrogen Energy, 2020, 45: 25719-25732. |
52 | ĆWIEKA K, LYSIK A, WEJRZANOWSKI T, et al. Microstructure and electrochemical behavior of layered cathodes for molten carbonate fuel cell[J]. Journal of Power Sources, 2021, 500: 229949. |
53 | AL A, KC A, TW A, et al. Silver coated cathode for molten carbonate fuel cells[J]. International Journal of Hydrogen Energy, 2020, 45(38):19847-19857. |
54 | WEJRZANOWSKI T, CWIEKA K, SKIBINSKI J, et al. Metallic foam supported electrodes for molten carbonate fuel cells[J]. Materials & Design, 2020, 193: 108864. |
55 | SONG S A, KIM H T, KIM K, et al. Effect of LiNiO2-coated cathode on cell performance in molten carbonate fuel cells[J]. International Journal of Hydrogen Energy, 2019, 44(23): 12085-12093. |
56 | DOYON J D, GILBERT T, DAVIES G, et al. NiO solubility in mixed alkali/alkaline earth carbonates[J]. Journal of the Electrochemical Society, 1987, 134(12): 3035-3038. |
57 | TANIMOTO K, MIYAZAKI Y, YANAGIDA M, et al. Effect of addition of alkaline earth carbonate on solubility of NiO in molten Li2CO3-Na2CO3 eutectic[J]. Denki Kagaku Oyobi Kogyo Butsuri Kagaku, 1995, 63(4): 316-318. |
58 | MITSUSHIMA S, MATSUZAWA K, KAMIYA N, et al. Improvement of MCFC cathode stability by additives[J]. Electrochimica Acta, 2002, 47(22/23): 3823-3830. |
59 | SCACCIA S. Investigation on NiO solubility in binary and ternary molten alkali metal carbonates containing additives[J]. Journal of Molecular Liquids, 2005, 116(2): 67-71. |
60 | MATSUZAWA K, MIZUSAKI T, MITSUSHIMA S, et al. The effect of La oxide additive on the solubility of NiO in molten carbonates[J]. Journal of Power Sources, 2005, 140(2): 258-263. |
61 | MELÉNDEZ-CEBALLOS A, ALBIN V, CRAPART C, et al. Influence of Cs and Rb additions in LiK and LiNa molten carbonates on the behaviour of MCFC commercial porous Ni cathode[J]. International Journal of Hydrogen Energy, 2017, 42(3): 1853-1858. |
62 | MATSUZAWA K, TATEZAWA G, MATSUDA Y, et al. Effects of rare-earth additives in Li∕Na eutectic carbonate for decreasing the solubility of NiO[J]. Journal of the Electrochemical Society, 2005, 152(6): A1116. |
63 | OTA K I, MATSUDA Y, MATSUZAWA K, et al. Effect of rare earth oxides for improvement of MCFC[J]. Journal of Power Sources, 2006, 160(2): 811-815. |
64 | TANIMOTO K, KOJIMA T, YANAGIDA M, et al. Optimization of the electrolyte composition in a (Li0.52Na0.48)2-2 xAExCO3 (AE=Ca and Ba) molten carbonate fuel cell[J]. Journal of Power Sources, 2004, 131(1/2): 256-260. |
65 | CHOI H J, IHM S K, LIM T H, et al. An evaluation of a stabilized NiO cathode for the reduction of NiO dissolution in molten carbonate fuel cells[J]. Journal of Power Sources, 1996, 61(1/2): 239-245. |
66 | ESCUDERO M J, NÓVOA X R, RODRIGO T, et al. Influence of lanthanum oxide as quality promoter on cathodes for MCFC[J]. Journal of Power Sources, 2002, 106(1/2): 196-205. |
67 | HUANG B, CHEN G, LI F, et al. Study of NiO cathode modified by rare earth oxide additive for MCFC by electrochemical impedance spectroscopy[J]. Electrochimica Acta, 2004, 49(28): 5055-5068. |
68 | DAZA L, RANGEL C M, BARANDA J, et al. Modified nickel oxides as cathode materials for MCFC[J]. Journal of Power Sources, 2000, 86(1/2): 329-333. |
69 | LIU Z P, GUO P Y, ZENG C L. Effect of Dy on the corrosion of NiO/Ni in molten (0.62Li, 0.38K)2CO3[J]. Journal of Power Sources, 2007, 166(2): 348-353. |
70 | HUANG B, YE X F, WANG S R, et al. Electrochemical performance of Y2O3/NiO cathode in the molten Li0.62/K0.38 carbonates eutectics[J]. Materials Research Bulletin, 2006, 41(10): 1935-1948. |
71 | KIM S G, YOON S P, HAN J, et al. A study on the chemical stability and electrode performance of modified NiO cathodes for molten carbonate fuel cells[J]. Electrochimica Acta, 2004, 49(19): 3081-3089. |
72 | KIM Y S, YI C W, CHOI H S, et al. Modification of Ni-based cathode material for molten carbonate fuel cells using Co3O4[J]. Journal of Power Sources, 2011, 196(4): 1886-1893. |
73 | KIM M H, HONG M Z, KIM Y S, et al. Cobalt and cerium coated Ni powder as a new candidate cathode material for MCFC[J]. Electrochimica Acta, 2006, 51(27): 6145-6151. |
74 | HUANG B, LI F, YU Q C, et al. Study of NiO cathode modified by ZnO additive for MCFC[J]. Journal of Power Sources, 2004, 128(2): 135-144. |
75 | SIMONETTI E, PRESTI R L. Characterization of Ni porous electrode covered by a thin film of LiMg0.05Co0.95O2[J]. Journal of Power Sources, 2006, 160(2): 816-820. |
76 | ESCUDERO M J, RODRIGO T, MENDOZA L, et al. Porous nickel MCFC cathode coated by potentiostatically deposited cobalt oxide[J]. Journal of Power Sources, 2005, 140(1): 81-87. |
77 | MATSUZAWA K, TATEZAWA G, MATSUDA Y, et al. Effects of rare-earth additives in Li∕Na eutectic carbonate for decreasing the solubility of NiO[J]. Journal of the Electrochemical Society, 2005, 152(6): A1116. |
[1] | 夏恒恒, 梁鹏程, 安仲勋. 硫系电解液添加剂对镍钴锰酸锂//石墨锂离子电池性能的影响[J]. 储能科学与技术, 2023, 12(8): 2390-2400. |
[2] | 刘志浩, 杜童, 李瑞瑞, 邓涛. 宽温域、高电压、安全无EC电解液研究进展[J]. 储能科学与技术, 2023, 12(8): 2504-2525. |
[3] | 徐冲, 徐宁, 蒋志敏, 李中凯, 胡洋, 严红, 马国强. 锂离子电池产气机制及基于电解液的抑制策略[J]. 储能科学与技术, 2023, 12(7): 2119-2133. |
[4] | 张贵萍, 闫筱炎, 王兵, 姚培新, 胡昌杰, 刘奕哲, 李纾黎, 薛建军. 长寿命循环的磷酸铁锂电池及材料、工艺[J]. 储能科学与技术, 2023, 12(7): 2134-2140. |
[5] | 胡川, 胡志伟, 李振东, 李帅, 王豪, 王丽平. 调控LiPF6 基电解液溶剂化结构稳定富锂锰基正极界面[J]. 储能科学与技术, 2023, 12(5): 1604-1615. |
[6] | 边煜华, 刘朝孟, 高宣雯, 李健国, 王达, 李尚倬, 骆文彬. 醚基电解液中CoS2/NC作为钠离子电池高性能阳极的原因分析[J]. 储能科学与技术, 2023, 12(5): 1500-1509. |
[7] | 时文超, 刘宇, 张博冕, 李琪, 韩春华, 麦立强. 电解液添加剂稳定水系电池锌负极界面的研究进展[J]. 储能科学与技术, 2023, 12(5): 1589-1603. |
[8] | 李社栋, 宋莹莹, 边煜华, 刘朝孟, 高宣雯, 骆文彬. 室温钠硫电池的发展现状和挑战[J]. 储能科学与技术, 2023, 12(5): 1315-1331. |
[9] | 王轩臣, 王达, 刘朝孟, 高宣雯, 骆文彬. 钾离子电池电解液的研究进展及展望[J]. 储能科学与技术, 2023, 12(5): 1409-1426. |
[10] | 汤才, 蒋江民, 王新峰, 刘广发, 崔艳华, 庄全超. Li/CF x 一次电池研究进展[J]. 储能科学与技术, 2023, 12(4): 1093-1109. |
[11] | 封迈, 陈楠, 陈人杰. 锂离子电池低温电解液的研究进展[J]. 储能科学与技术, 2023, 12(3): 792-807. |
[12] | 薛凯元, 汪妍, 郎俊伟, 何田, 戴作强, 郑宗敏. 双阳离子型离子液体在能量存储和转化体系中的应用进展[J]. 储能科学与技术, 2023, 12(3): 808-821. |
[13] | 张群斌, 董陶, 李晶晶, 刘艳侠, 张海涛. 废旧电池电解液回收及高值化利用研发进展[J]. 储能科学与技术, 2022, 11(9): 2798-2810. |
[14] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[15] | 房茂霖, 张英, 乔琳, 刘淑敏, 曹中琦, 张华民, 马相坤. 铁铬液流电池技术的研究进展[J]. 储能科学与技术, 2022, 11(5): 1358-1367. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||