储能科学与技术 ›› 2023, Vol. 12 ›› Issue (8): 2444-2456.doi: 10.19799/j.cnki.2095-4239.2023.0112

• 储能材料与器件 • 上一篇    下一篇

熔融碳酸盐燃料电池阴极溶解与防护

李聪1,2(), 王桃1,2, 任延杰1,2, 周立波1, 陈荐1, 陈维1()   

  1. 1.长沙理工大学能源与动力工程学院,湖南 长沙 410114
    2.清远市粤博科技有限公司,广东 清远 511540
  • 收稿日期:2023-04-13 修回日期:2023-04-23 出版日期:2023-08-05 发布日期:2023-08-23
  • 通讯作者: 陈维 E-mail:liconghntu@csust.edu.cn;weichen@csust.edu.cn
  • 作者简介:李聪(1985—),男,博士,研究方向为动力设备材料特性及安全性评价,E-mail:liconghntu@csust.edu.cn
  • 基金资助:
    国家自然科学基金(52175129);清远市科技计划项目(2022KJJH023)

Cathodic dissolution and protection of molten carbonate fuel cells

Cong LI1,2(), Tao WANG1,2, Yanjie REN1,2, Libo ZHOU1, Jian CHEN1, Wei CHEN1()   

  1. 1.School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410114, Hunan, China
    2.Qingyuan Yuebo Technology Co. , Ltd, Qingyuan 511540, Guangdong, China
  • Received:2023-04-13 Revised:2023-04-23 Online:2023-08-05 Published:2023-08-23
  • Contact: Wei CHEN E-mail:liconghntu@csust.edu.cn;weichen@csust.edu.cn

摘要:

熔融碳酸盐燃料电池(MCFC)是一种高效、可持续发电技术,其能源转换效率高、排放净化度高,是一种极具前途的发电技术。但是,由于其高工作温度和熔融碳酸盐电解质的特殊性质,MCFC的发展一直受到阻碍。其中,阴极溶解是一个严重的问题,会导致Ni短路等一系列问题,影响燃料电池的性能和寿命。本文综述了降低熔融碳酸盐燃料电池阴极溶解的策略,简述了近年来从替代材料、涂层改性和添加剂三个方面对阴极溶解的改善研究,探讨了替代NiO材料的方案不完全可行的问题,并提出了使用涂层技术来增强NiO阴极化学性能和降低阴极溶解度的可能性。涂层技术的优缺点也被详细列举,包括溶液浸渍电镀、溶胶-凝胶工艺和原子层沉积等一系列研究进展和性能。此外,本文还探讨了增加电解液碱度和向NiO中添加碱性氧化物来减少阴极溶解的方法,但也指出添加过多氧化物会降低电池性能的风险。综合分析表明,通过开发新型添加剂和涂层技术弥补合金作为阴极材料的性能缺陷,尝试制备新型复合材料等途径,有望获得高性能、低成本的阴极材料,从而实现MCFC的大规模商业化应用。

关键词: 熔融碳酸盐燃料电池, 阴极, 溶解, 涂层, 电解液

Abstract:

The molten carbonate fuel cell (MCFC) is an efficient and sustainable power generation technology with high energy conversion efficiency and emission purification degree. Despite its immense potential, the development of MCFCs has been hindered owing to their high operating temperature and the unique properties of the molten carbonate electrolyte. Cathode dissolution is a severe issue that can lead to problems, such as Ni short circuits, negatively affecting fuel cell performance and lifespan. This review presents strategies for reducing cathode dissolution in MCFCs. It provides a brief overview of recent research on improving cathode dissolution from three aspects: alternative materials, coating modification, and additives. The review discusses the limitations of alternative NiO material and proposes the potential of coating technology to enhance the cathodic chemical performance of NiO and reduce cathode dissolution. The advantages and disadvantages of coating technology are also detailed, including research advancements and performance evaluations of methods, such as solution impregnation electroplating, sol-gel process, and atomic layer deposition. In addition, the article explores methods for reducing cathode dissolution by increasing the alkalinity of the electrolyte and incorporating alkaline oxides into NiO. However, it also highlights the risk of compromising cell performance by introducing excessive oxides. Overall, the article suggests that by developing new additives, leveraging coating technologies, compensating for the performance deficiencies of alloy cathode materials, and exploring new composite materials and other approaches, it is possible to obtain high-performance, low-cost cathode materials, thereby achieving large-scale commercialization of MCFC.

Key words: molten carbonate fuel cell, cathode, dissolve, coating, electrolyte

中图分类号: