1 |
GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
|
2 |
WU Z P, WANG Y L, LIU X B, et al. Carbon-nanomaterial-based flexible batteries for wearable electronics[J]. Advanced Materials, 2019, 31(9): 1800716.
|
3 |
GUDE V G. Energy storage for desalination processes powered by renewable energy and waste heat sources[J]. Applied Energy, 2015, 137: 877-898.
|
4 |
LI Z, LI B R, CUI L, et al. Stability of the thermal performances of molten salt-based nanofluid[J]. Energy Storage Science and Technology, 2020, 9(6): 1775-1783.
|
5 |
LI Y, WU F, LI Y, et al. Ether-based electrolytes for sodium ion batteries[J]. Chemical Society Reviews, 2022, 51(11): 4484-4536.
|
6 |
WANG L P, YU L H, WANG X, et al. Recent developments in electrode materials for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(18): 9353-9378.
|
7 |
张宁, 刘永畅, 陈程成, 等. 钠离子电池电极材料研究进展[J]. 无机化学学报, 2015, 31(9): 1739-1750.
|
|
ZHANG N, LIU Y C, CHEN C C, et al. Research on electrode materials for sodium-ion batteries[J]. Chinese Journal of Inorganic Chemistry, 2015, 31(9): 1739-1750.
|
8 |
WANG Q Q, ZHU X S, LIU Y H, et al. Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries[J]. Carbon, 2018, 127: 658-666.
|
9 |
RATH P C, PATRA J, HUANG H T, et al. Carbonaceous anodes derived from sugarcane bagasse for sodium-ion batteries[J]. ChemSusChem, 2019, 12(10): 2302-2309.
|
10 |
BALOGUN M S, LUO Y, QIU W T, et al. A review of carbon materials and their composites with alloy metals for sodium ion battery anodes[J]. Carbon, 2016, 98: 162-178.
|
11 |
HOU H S, QIU X, WEI W F, et al. Carbon anode materials for advanced sodium‐ion batteries[J]. Advanced Energy Materials, 2017, 7(24): 1602898.
|
12 |
LIU H L, LV C X, CHEN S, et al. Fe-alginate biomass-derived FeS/3D interconnected carbon nanofiber aerogels as anodes for high performance sodium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 795: 54-59.
|
13 |
SEKAR S, AQUEEL AHMED A T, KIM D Y, et al. One-pot synthesized biomass C-Si nanocomposites as an anodic material for high-performance sodium-ion battery[J]. Nanomaterials, 2020, 10(9): 1728.
|
14 |
CHEN S L, FENG F, MA Z F. Lignin-derived nitrogen-doped porous ultrathin layered carbon as a high-rate anode material for sodium-ion batteries[J]. Composites Communications, 2020, 22: 100447.
|
15 |
QIU S, XIAO L F, SUSHKO M L, et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Advanced Energy Materials, 2017, 7(17):1700403.
|
16 |
WANG N N, XU X, LIAO T, et al. Boosting sodium storage of double-shell sodium titanate microspheres constructed from 2D ultrathin nanosheets via sulfur doping[J]. Advanced Materials, 2018, 30(49): 1804157.
|
17 |
XIE F X, ZHANG L, SU D W, et al. Na2Ti3O7 @N-doped carbon hollow spheres for sodium-ion batteries with excellent rate performance[J]. Advanced Materials, 2017, 29(24): 1700989.
|
18 |
FU S D, NI J F, XU Y, et al. Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for sodium-ion batteries[J]. Nano Letters, 2016, 16(7): 4544-4551.
|
19 |
PAN H L, LU X, YU X Q, et al. Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries [J]. Adv. Energy Mater, 2013, 3(9): 1186-1194.
|
20 |
TANG T, DING L, JIANG Z, et al. Advanced transition metal/nitrogen/carbon-based electrocatalysts for fuel cell applications[J]. Science China Chemistry, 2020, 63(11): 1517-1542.
|
21 |
WAN Z M, SHAO J E, YUN J J, et al. Core-shell structure of hierarchical quasi-hollow MoS2 microspheres encapsulated porous carbon as stable anode for Li-ion batteries[J]. Small, 2014, 10(23): 4975-4981.
|
22 |
SUN N, LIU H, XU B. Facile synthesis of high performance hard carbon anode materials for sodium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(41): 20560-20566.
|
23 |
YUE L, XU W Y, LI K, et al. 3D nitrogen and sulfur equilibrium co-doping hollow carbon nanosheets as Na-ion battery anode with ultralong cycle life and superior rate capability[J]. Applied Surface Science, 2021, 546: 149168.
|
24 |
LIU Y C, SHI M J, YAN C, et al. Inspired cheese-like biomass-derived carbon with plentiful heteroatoms for high performance energy storag[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(7): 6583-6592.
|
25 |
HE H N, HUANG D, PANG W K, et al. Plasma-induced amorphous shell and deep cation-site S doping endow TiO2 with extraordinary sodium storage performance[J]. Advanced Materials, 2018, 30(26): 1801013.
|
26 |
NI J F, FU S D, WU C, et al. Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage[J]. Advanced Materials, 2016, 28(11): 2259-2265.
|
27 |
LIAN Y J, XIN W L, ZHANG M, et al. Low-content Ni-doped CoS2 embedded within N, P-codoped biomass-derived carbon spheres for enhanced lithium/sodium storage[J]. Journal of Materials Science, 2019, 54(11): 8504-8514.
|
28 |
XIE J R, ZHU K J, MIN J, et al. In-situ grown ultrathin MoS2 nanosheets on MoO2 hollow nanospheres to synthesize hierarchical nanostructures and its application in lithium-ion batteries[J]. Ionics, 2019, 25(4): 1487-1494.
|
29 |
WANG Q D, ZHAO C L, LU Y X, et al. Advanced nanostructured anode materials for sodium-ion batteries[J]. Small, 2017, 13(42): 1701835.
|
30 |
ZHANG J Y, CHEN Z Y, WANG G Y, et al. Eco-friendly and scalable synthesis of micro-/ mesoporous carbon sub-microspheres as competitive electrodes for supercapacitors and sodium-ion batteries[J]. Applied Surface Science, 2020, 533: 147511.
|
31 |
SHEN F, ZHU H L, LUO W, et al. Chemically crushed wood cellulose fiber towards high-performance sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(41): 23291-23296.
|
32 |
CHEN H H, KE G X, WU X C, et al. Amorphous MoS3 decoration on 2D functionalized MXene as a bifunctional electrode for stable and robust lithium storage[J]. Chemical Engineering Journal, 2021, 406: 12677.
|