储能科学与技术 ›› 2023, Vol. 12 ›› Issue (9): 2715-2726.doi: 10.19799/j.cnki.2095-4239.2023.0273

• • 上一篇    下一篇

不同杂原子掺杂钛酸钠对储钠性能的影响

葛金雨4(), 孟祥辉1, 祁永军1, 孙浩2, 李健君2, 周冰3, 桂亭亭2, 邢庆伟2, 黄曼4()   

  1. 1.河北奥冠电源有限责任公司,河北 衡水 253800
    2.山东奥冠新能源科技有限公司,山东 德州 253000
    3.河北国钠新能源科技有限公司,河北 衡水 253800
    4.济南大学前沿交叉科学研究院 山东 济南 250022
  • 收稿日期:2023-04-28 修回日期:2023-05-07 出版日期:2023-09-05 发布日期:2023-09-16
  • 通讯作者: 黄曼 E-mail:gejinyu2022@163.com;huangman_90@163.com
  • 作者简介:葛金雨(2000—),女,硕士研究生,研究方向为能源材料,E-mail:gejinyu2022@163.com
  • 基金资助:
    氧缺陷诱导Bi/TiO2-x异质结构界面键合及内电场联合调控储钠性能研究(52202239)

The effect of different heteroatoms-doped Na2Ti3O7 on sodium ion storage

Jinyu GE4(), Xianghui MENG1, Yongjun QI1, Hao SUN2, Jianjun LI2, Bing ZHOU3, Tingting GUI2, Qingwei XING2, Man HUANG4()   

  1. 1.Hebei Aoguan Power Supply Co. , Ltd. , Hengshui 253800, Hebei, China
    2.Shandong Allgrand New Energy Technology Co. , Ltd. , Dezhou 25300, Hebei, China
    3.Hebei Guona New Energy Technology Co. Ltd. , Hengshui 253800, Hebei, China
    4.Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Ji'nan, Ji'nan 250022, Shandong, China
  • Received:2023-04-28 Revised:2023-05-07 Online:2023-09-05 Published:2023-09-16
  • Contact: Man HUANG E-mail:gejinyu2022@163.com;huangman_90@163.com

摘要:

相比于传统的锂离子电池,钠离子电池具有低成本、高安全性的优点,因此被赋予厚望。电极材料的电化学性能决定着整个电池的功能,由于钠离子半径比锂离子大,使得离子嵌入/脱出比较慢,且多次循环后电极材料容易出现结构破坏,从而引起容量的衰减。因此,高能量密度、长寿命电极材料是实现高性能钠离子电池的突破口。钛酸钠(NTO)中TiO6八面体通过角或边相互连接,形成隧道状和层状结构,这种开放式结构使NTO成为极具潜力的钠离子电池负极材料。在这项工作中,借助扫描电子显微技术(SEM)、透射电镜(TEM)能谱分析技术(EDS)和电化学技术等表征测试手段,对比P和S掺杂NTO作为钠离子电池负极材料的电化学行为差异。我们发现磷掺杂的NTO(P-NTO)与硫掺杂的NTO(S-NTO)相比表现出优异的电化学性能,当它用作钠离子电池电极时,表现出出色的长循环稳定性和倍率性能。当电流密度高达2000 mA/g时,P-NTO提供111 mAh/g的可逆容量。即使经过1300次循环(500 mA/g),该电极仍保持150 mAh/g的可逆容量。这些优异的性能主要归功于NTO的开放结构和P的掺杂大大促进了纳米片的电子传输。

关键词: 杂原子, 掺杂, 钛酸钠, 储钠性能

Abstract:

Sodium-ion batteries (SIBs) are promising energy storage devices because of their low cost and high safety compared with traditional lithium-ion batteries (LIBs). The electrochemical performance of the electrode material determines the whole battery's function. As sodium ion's radius is larger than lithium ion's, the ion embedding/removal is relatively slow, and the electrode material is prone to structural damage after multiple cycles, resulting in capacity decay. Therefore, high energy density and long-life electrode materials are the breakthroughs to achieve high-performance SIBs. Meanwhile, the battery energy storage mechanism and electrode reaction dynamics still need to be further explored. Given the above problems, designing advanced cathode materials to achieve a good match with the existing positive electrodes is one of the urgent problems to be solved in developing high-performance SIBs to improve the energy density and cyclic life of the battery. The TiO6 octahedrons were connected to each other by corners or edges to form tunnel- and layer-structured sodium titanates (NTO). This open structure made NTO promising anode materials for SIBs. In this work, we compared the electrochemical behavior difference of P- and S-doped NTO as anode materials for SIBs. We found that phosphorus-doped NTO (P-NTO) had excellent electrochemical performance compared with sulfur-doped NTO (S-NTO); when it was used as an electrode for SIBs, it exhibited outstanding long-term cycling stability and rate performance. When the current density was high, up to 2000 mA/g, the P-NTO delivered a reversible capacity of 111 mAh/g. Even after 1300 cycles (500 mA/g), the electrode retained a capacity of 150 mAh/g. These excellent performances are mainly attributed to the open structure of NTO, and doping P drastically boosted the electron movement within the nanosheets.

Key words: heteroatoms, doping, Na2Ti3O7 nanosheets, sodium ion storage

中图分类号: