储能科学与技术 ›› 2023, Vol. 12 ›› Issue (9): 2707-2714.doi: 10.19799/j.cnki.2095-4239.2023.0347

• 储能材料与器件 • 上一篇    下一篇

O3/P2-Na x Ni1/3Co1/3Mn1/3O2 复合相正极材料的结构演变与储钠性能

蔡浩然1(), 闫利珏1, 杨旭1, 潘慧霖1,2()   

  1. 1.浙江大学化学系,浙江 杭州 310027
    2.能源清洁国家重点实验室,浙江 杭州 310027
  • 收稿日期:2023-05-22 修回日期:2023-06-05 出版日期:2023-09-05 发布日期:2023-09-16
  • 通讯作者: 潘慧霖 E-mail:so_nicemechr@zju.edu.cn;panhuilin@zju.edu.cn
  • 作者简介:蔡浩然(1997—),男,硕士研究生,研究方向为钠离子电池层状氧化物正极材料,E-mail:so_nicemechr@zju.edu.cn
  • 基金资助:
    浙江省自然科学基金杰出青年项目(LR23B030003);国家自然科学基金委员会联合基金项目(U21A2075)

Structural evolution and sodium-storage performance of O3/P2-Na x Ni1/3Co1/3Mn1/3O2 multiphasic cathode materials

Haoran CAI1(), Lijue YAN1, Xu YANG1, Huilin PAN1,2()   

  1. 1.Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
    2.State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • Received:2023-05-22 Revised:2023-06-05 Online:2023-09-05 Published:2023-09-16
  • Contact: Huilin PAN E-mail:so_nicemechr@zju.edu.cn;panhuilin@zju.edu.cn

摘要:

复合相界面可有效抑制含钠层状过渡金属氧化物正极材料中复杂的结构相变,提高循环稳定性。然而,复合相界面的设计与调控与层状氧化物的合成、煅烧过程密切相关。通过改变降温方式可实现对O3/P2-Na x Ni1/3Co1/3Mn1/3O2复合相正极材料的O3/P2相界面调控,进而调节其电化学储钠性能。研究发现,自然降温有利于高温煅烧阶段扩散至材料表面的钠离子返回体相,形成稳定的O3/P2相界面。急速降温过程如液氮骤冷,会阻隔钠离子返回体相,导致复合相材料容量降低,且不利于形成稳定的O3/P2相界面,削弱循环性能。电化学阻抗和循环伏安测试表明液氮降温会增大O3/P2-Na x Ni1/3Co1/3Mn1/3O2复合相界面阻抗,限制钠离子扩散动力学,导致钠离子扩散系数下降。本工作尝试建立钠离子扩散平衡机制以解释降温过程中钠离子的扩散行为及其对O3/P2相界面与体相钠含量的影响。合理调控层状氧化物正极煅烧过程的降温过程,对构建稳定复合相结构,抑制结构相变,提高层状氧化物材料的电化学稳定性具有重要意义。

关键词: 钠离子电池, 复合相结构, 结构相变, 降温过程, 钠离子扩散

Abstract:

Multiphasic interfaces can effectively inhibit the complex structural phase transition in layered transition metal oxide cathode materials containing sodium,thereby increasing cycle stability. Nevertheless, the design and manipulation of the multiphasic interface are intrinsically linked to the synthesis and calcination process of layered oxides. The O3/P2 multiphasic interface of the O3/P2-Na x Ni1/3Co1/3Mn1/3O2 multiphasic cathode material can be controlled, and its electrochemical sodium storage performance can be regulated by adjusting the cooling process. It is found that natural cooling promotes the return of sodium ions diffused to the surface of the material during the high-temperature calcination period back to the bulk phase, forming a stable O3/P2 phase interface. Rapid cooling process, such as liquid nitrogen quenching, will prevent sodium ions from returning to the bulk phase, reducing the capacity of the multiphasic material. It is also not beneficial to forming a stable O3/P2 phase interface, which reduces the cycling performance. According to electrochemical impedance and cyclic voltammetry tests, liquid nitrogen quenching would increase the interface impedance of O3/P2-Na x Ni1/3Co1/3Mn1/3O2, limit the diffusion kinetics of sodium ions, and reduce the diffusion coefficient of sodium ions. We attempted to establish a sodium ion diffusion equilibrium mechanism to describe the Na+ diffusion behavior and explain the impact of the cooling process on the O3/P2 multiphasic interface and bulk phase sodium content. Reasonable regulation of the cooling process during the cathode calcination process of layered oxide is crucial for constructing a stable multiphasic structure, inhibiting structural phase transition, and improving the electrochemical stability of layered oxide materials.

Key words: sodium-ion batteries, multiphasic structure, phase transition, cooling process, diffusion of sodium ions

中图分类号: