储能科学与技术 ›› 2024, Vol. 13 ›› Issue (2): 680-690.doi: 10.19799/j.cnki.2095-4239.2023.0533

• 储能测试与评价 • 上一篇    下一篇

基于MIAEKF的多温度下锂电池SOC估计

袁照凯(), 范秋华(), 王冬青, 孙天民   

  1. 青岛大学电气工程学院,山东 青岛 266071
  • 收稿日期:2023-08-09 修回日期:2023-09-04 出版日期:2024-02-28 发布日期:2024-03-01
  • 通讯作者: 范秋华 E-mail:15615402357@163.com;qhf_hh@163.com
  • 作者简介:袁照凯(1998—),男,硕士研究生,研究方向为电池管理系统及其关键技术,E-mail:15615402357@163.com
  • 基金资助:
    国家自然科学基金项目(62273190)

State of charge estimation for lithium-ion batteries under multiple temperatures based on the MIAEK algorithm

Zhaokai YUAN(), Qiuhua FAN(), Dongqing WANG, Tianmin SUN   

  1. School of Electrical Engineering, Qingdao University, Qingdao 266071, Shandong, China
  • Received:2023-08-09 Revised:2023-09-04 Online:2024-02-28 Published:2024-03-01
  • Contact: Qiuhua FAN E-mail:15615402357@163.com;qhf_hh@163.com

摘要:

随着锂电池在电动车辆中的广泛应用,准确估计电池荷电状态(SOC)对于电池的安全性和使用性能至关重要。然而,变化温度环境条件下,传统Kalman估计方法降低电池SOC估计准确性。为解决上述问题,本研究提出了基于多新息自适应扩展卡尔曼滤波(MIAEKF)的SOC估计方法。首先,基于多组不同温度下测试实验获取的电池数据,利用带遗忘因子的最小二乘法(FFRLS)进行参数辨识,获得了多温度下不同SOC阶段的电池参数。其次,利用函数拟合的方法建立了以SOC、温度为自变量,电池参数为因变量的函数模型,用于描述电池参数的动态行为。最后,在此基础上引入了MIAEKF算法,该算法结合了自适应和多新息的思想,通过滑动窗口自适应调整过程噪声与测量噪声协方差,并将窗口的新息均值作为窗口最新时刻后验估计的新息来增加误差新息。选择合适的窗口长度与新息均值系数能够有效提升SOC估计精度。实验数据验证的结果表明,基于MIAEKF的SOC估计方法在相同条件下相较于传统的扩展卡尔曼滤波(EKF)、自适应扩展卡尔曼滤波(AEKF)表现出更高的估计精度和稳定性。在多温度下,通过引入电池参数函数模型,MIAEKF能够自适应多个温度下的SOC估计,并且估计误差均在±1%以内。

关键词: MIAEKF, 锂电池, SOC, 多温度, 函数拟合

Abstract:

With the widespread application of lithium-ion batteries in electric vehicles, accurate estimation of the state of charge (SOC) of batteries is crucial for ensuring battery safety and optimal performance. However, traditional Kalman estimation methods face challenges maintaining accuracy under variable temperature conditions. To address this issue, this study proposes a SOC estimation method based on multi-innovation adaptive extended Kalman filtering (MIAEKF). This study initially performs parameter identification using battery data from experiments conducted at various temperatures. The forgetting factor recursive least squares method is employed for this purpose, providing battery parameters at different SOC stages under multiple temperature conditions. Second, a function fitting approach is used to establish a model with SOC and temperature as independent variables and battery parameters as dependent variables, describing the dynamic behavior of battery parameters. Finally, the MIAEKF algorithm is introduced, incorporating adaptivity and multi-innovation concepts from the Kalman filtering algorithm. The sliding window is introduced to replace the traditional adaptive factor for adjusting the process noise and measurement noise covariance adaptively. The mean of multi-innovations within the window is used to augment the error innovation for the posterior estimate. By selecting an appropriate window length and innovation mean coefficient, the accuracy of SOC estimation is effectively improved. Verification using experimental data shows that the SOC estimation method based on MIAEKF outperforms traditional extended Kalman filtering and adaptive extended Kalman filtering in terms of estimation accuracy and stability under the same conditions. Under multiple temperature conditions, MIAEKF can adaptively estimate SOC at different temperatures, with estimation errors within ±1%. In summary, this study effectively addresses the complexity of SOC estimation for lithium-ion batteries under variable temperature conditions by proposing the SOC estimation method based on MIAEKF.

Key words: MIAEKF, lithium batteries, SOC, multiple temperatures, function fitting

中图分类号: