1 |
LI X Y, NIU C, LI X X, et al. Pore-scale investigation on effects of void cavity distribution on melting of composite phase change materials[J]. Applied Energy, 2020, 275: 115302.
|
2 |
刘伟, 李振明, 刘铭扬, 等. 高温相变储热材料制备与应用研究进展[J]. 储能科学与技术, 2023, 12(2): 398-430.
|
|
LIU W, LI Z M, LIU M Y, et al. Review of high-temperature phase change heat storage material preparation and applications[J]. Energy Storage Science and Technology, 2023, 12(2): 398-430.
|
3 |
李椿, 王志华, 王建春, 等. 壳管式相变储能换热器性能研究与场协同效应分析[J]. 太阳能学报, 2020, 41(3): 226-233.
|
|
LI C, WANG Z H, WANG J C, et al. Performance study and field synergy analysis of shell and tube phase change energy storage heat exchanger[J]. Acta Energiae Solaris Sinica, 2020, 41(3): 226-233.
|
4 |
肖俊兵, 邹博, 庄依杰, 等. 泡沫金属复合相变体系导热性能研究及应用[J]. 中南大学学报(自然科学版), 2022, 53(12): 4687-4699.
|
|
XIAO J B, ZOU B, ZHUANG Y J, et al. Research and application on thermal conduction performance of metal foam composite phase change system[J]. Journal of Central South University (Science and Technology), 2022, 53(12): 4687-4699.
|
5 |
陈红兵, 高雪宁, 刘涛, 等. 应用石蜡/GO复合相变材料的太阳能PV/T系统性能[J]. 储能科学与技术, 2023, 12(3): 661-668.
|
|
CHEN H B, GAO X N, LIU T, et al. Performance of a solar PV/T system applying a paraffin/graphene oxide composite phase change material[J]. Energy Storage Science and Technology, 2023, 12(3): 661-668.
|
6 |
田伟, 梁晓光, 党硕, 等. 金属泡沫-翅片复合结构强化相变蓄热的实验研究[J]. 西安交通大学学报, 2021, 55(11): 17-24.
|
|
TIAN W, LIANG X G, DANG S, et al. Visualized experimental study on the phase change heat storage enhanced with metal foam[J]. Journal of Xi'an Jiaotong University, 2021, 55(11): 17-24.
|
7 |
REN Q L, XU H T, LUO Z Q. PCM charging process accelerated with combination of optimized triangle fins and nanoparticles[J]. International Journal of Thermal Sciences, 2019, 140: 466-479.
|
8 |
ZHU F, ZHANG C, GONG X L. Numerical analysis and comparison of the thermal performance enhancement methods for metal foam/phase change material composite[J]. Applied Thermal Engineering, 2016, 109: 373-383.
|
9 |
TIAN L L, LIU X, CHEN S, et al. Effect of fin material on PCM melting in a rectangular enclosure[J]. Applied Thermal Engineering, 2020, 167: 114764.
|
10 |
张永学, 王梓熙, 鲁博辉, 等. 雪花型翅片提高相变储热单元储/放热性能[J]. 储能科学与技术, 2022, 11(2): 521-530.
|
|
ZHANG Y X, WANG Z X, LU B H, et al. Enhancement of charging and discharging performance of a latent-heat thermal-energy storage unit using snowflake-shaped fins[J]. Energy Storage Science and Technology, 2022, 11(2): 521-530.
|
11 |
刘立君, 宁雅倩, 李晓庆, 等. 偏心分形翅片管相变储热单元性能强化模拟[J]. 储能科学与技术, 2022, 11(11): 3681-3687.
|
|
LIU L J, NING Y Q, LI X Q, et al. Performance enhancement simulation of eccentric fractal-fin tube phase change heat storage unit[J]. Energy Storage Science and Technology, 2022, 11(11): 3681-3687.
|
12 |
MANCIN S, DIANI A, DORETTI L, et al. Experimental analysis of phase change phenomenon of paraffin waxes embedded in copper foams[J]. International Journal of Thermal Sciences, 2015, 90: 79-89.
|
13 |
DING C, ZHANG C, MA L, et al. Numerical investigation on melting behaviour of phase change materials/metal foam composites under hypergravity conditions[J]. Applied Thermal Engineering, 2022, 207: 118153.
|
14 |
崔婷婷, 王燕. 基于LBM的多孔介质无机复合相变材料储能特性[J]. 储能科学与技术, 2023, 12(1): 61-68.
|
|
CUI T T, WANG Y. Energy storage characteristics of porous inorganic composite phase-change materials based on the Lattice Boltzmann Method[J]. Energy Storage Science and Technology, 2023, 12(1): 61-68.
|
15 |
WANG M R, WANG J K, PAN N, et al. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2007, 75(3 Pt 2): 036702.
|
16 |
DSILVA WINFRED RUFUSS D, SUGANTHI L, INIYAN S, et al. Effects of nanoparticle-enhanced phase change material (NPCM) on solar still productivity[J]. Journal of Cleaner Production, 2018, 192: 9-29.
|
17 |
JESUMATHY S, UDAYAKUMAR M, SURESH S. Experimental study of enhanced heat transfer by addition of CuO nanoparticle[J]. Heat and Mass Transfer, 2012, 48(6): 965-978.
|
18 |
陈俊旗, 曹世豪. 自然对流对方腔内相变石蜡熔化蓄热的影响[J]. 科学技术与工程, 2022, 22(24): 10586-10593.
|
|
CHEN J Q, CAO S H. Effect of natural convection on melting heat storage of phase change paraffin in a square cavity[J]. Science Technology and Engineering, 2022, 22(24): 10586-10593.
|
19 |
CHATTERJEE D, CHAKRABORTY S. An enthalpy-based lattice Boltzmann model for diffusion dominated solid-liquid phase transformation[J]. Physics Letters A, 2005, 341(1/2/3/4): 320-330.
|
20 |
HUANG R Z, WU H Y, CHENG P. A new lattice Boltzmann model for solid-liquid phase change[J]. International Journal of Heat and Mass Transfer, 2013, 59: 295-301.
|
21 |
NOBLE D R, TORCZYNSKI J R. A lattice-Boltzmann method for partially saturated computational cells[J]. International Journal of Modern Physics C, 1998, 9(8): 1189-1201.
|
22 |
JIN H Q, FAN L W, LIU M J, et al. A pore-scale visualized study of melting heat transfer of a paraffin wax saturated in a copper foam: Effects of the pore size[J]. International Journal of Heat and Mass Transfer, 2017, 112: 39-44.
|