储能科学与技术 ›› 2024, Vol. 13 ›› Issue (1): 279-292.doi: 10.19799/j.cnki.2095-4239.2023.0594
陈珊珊1(), 郑翔2, 王若1, 原铭蔓1, 彭威1, 鲁博明1, 张光照1, 王朝阳3, 王军1, 邓永红1()
收稿日期:
2023-08-31
修回日期:
2023-09-05
出版日期:
2024-01-05
发布日期:
2024-01-22
通讯作者:
邓永红
E-mail:sschen2000@163.com;yhdeng08@163.com
作者简介:
陈珊珊(2000—),女,硕士研究生,从事锂离子电池电解液研究,E-mail:sschen2000@163.com;
基金资助:
Shanshan CHEN1(), Xiang ZHENG2, Ruo WANG1, Mingman YUAN1, Wei PENG1, Boming LU1, Guangzhao ZHANG1, Chaoyang WANG3, Jun WANG1, Yonghong DENG1()
Received:
2023-08-31
Revised:
2023-09-05
Online:
2024-01-05
Published:
2024-01-22
Contact:
Yonghong DENG
E-mail:sschen2000@163.com;yhdeng08@163.com
摘要:
随着新能源和动力系统应用的日益成熟,锂离子电池在未来必将发挥越来越重要的作用,高比能电池已经成为当前研究的热点,并不断提出更高的性能要求。具有超高理论能量密度的硅材料被认为是缓解电动汽车行业里程焦虑的新一代负极材料,预示着未来几年将是硅基负极锂离子电池产业化应用的黄金时期。然而,硅在脱/嵌锂过程中会反复收缩膨胀(体积变化率约为300%),致使负极材料粉化、脱落,进而失去电接触,造成负极材料的失活;其次,循环过程中不断的体积变化会对其表面固体电解质界面层造成持续不断的破坏,因此难以形成稳定的固体电解质中间相(SEI)膜,这导致大量活性锂和电解液的消耗,最终导致容量快速衰减。本综述旨在从电解液添加剂在SEI形成和修饰、Lewis碱中和、溶剂化调控等作用机理角度对硅基负极界面恶化方面所面临的挑战进行分析,并重点介绍硅基负极电解液添加剂的最新成果。此外,通过对氟、硅烷、酰胺、氰酸酯等官能团构效关系方面的深入讨论和比较,本综述还深入研究了电解液添加剂的设计问题,以激发读者的新思路和新想法,协助读者识别或者设计合成适用于硅基负极的电解液添加剂,为高比能电池的发展铺平道路。
中图分类号:
陈珊珊, 郑翔, 王若, 原铭蔓, 彭威, 鲁博明, 张光照, 王朝阳, 王军, 邓永红. 锂离子电池硅基负极电解液添加剂研究进展:挑战与展望[J]. 储能科学与技术, 2024, 13(1): 279-292.
Shanshan CHEN, Xiang ZHENG, Ruo WANG, Mingman YUAN, Wei PENG, Boming LU, Guangzhao ZHANG, Chaoyang WANG, Jun WANG, Yonghong DENG. Research progress in the electrolyte additives in silicon-based anode for lithium-ion batteries: Challenges and prospects[J]. Energy Storage Science and Technology, 2024, 13(1): 279-292.
表1
硅基负极体系中含氟类电解液添加剂电化学性能比较"
添加剂体系 | 分子结构 | 电极 | 倍率; 截止电压 | 循环性能; 库仑效率 |
---|---|---|---|---|
3.5 mol/L LiFSI/FEC-TFEC | TFEC [ | SiNPs || LiFePO4 | 0.5 C; 3.8 V | 80.8% after 300 cycles; 99.8% |
2% HFPN-1 mol/L LiPF6 in EC∶EMC (3∶7, 质量比) | HFPN [ | SiO x /C || NCM523 | 0.5 C; 4.3 V | 70% after 412 cycles; 80.9%±≤0.1% |
2% EtPFPN-1 mol/L LiPF6 in EC∶EMC (3∶7, 质量比) | EtPFPN [ | SiO x /C || NCM523 | 0.5 C; 4.3 V | 70% after 395 cycles; 80.7%±≤0.1% |
10% DFEC-1 mol/L LiPF6 in EC∶DMC∶DEC (1∶1∶1, 体积比) | DFEC [ | Li || SiO x @C | 0.5 C; 1.5 V | 70.3% after 200 cycles; 99.8% |
3% FEC-1.2 mol/L LiPF6 in EC∶EMC (3∶7, 质量比) | FEC [ | SiO x /C || NCM622 | 0.1C; 4.1 V | 82% after 308 cycles; >99.9% |
表2
硅基负极体系中含硼类电解液添加剂电化学性能比较"
添加剂体系 | 分子结构 | 电极 | 倍率; 截止电压 | 循环性能; 库仑效率 |
---|---|---|---|---|
1% TPB in 1 mol/L LiPF6-EC∶EMC (1∶1, 质量比) | TPB[ | Li ||SiC | 0.2 C; 2 V | 98.1% after 50 cycles; 87.65% (ICE) |
2% TPB in 1 mol/L LiPF6-EC∶DEC (3∶7, 质量比) | PBE-DG[ | Si-C || NCM523 | 0.1 C; 4.2 V | 75% after 50 cycles; 87% (ICE) |
2% (质量分数) LiDFBOP in 1 mol/L LiPF6-EC∶DEC (1∶1, 体积比) | LiDFBOP[ | Li || Si@Graphite@C | 0.2 C; 2 V | 62.66% after 100 cycles; 84.98% (ICE) |
表3
硅基负极体系中其他类型电解液添加剂电化学性能比较"
添加剂体系 | 分子结构 | 电极 | 倍率; 截止电压 | 循环性能; 库仑效率 |
---|---|---|---|---|
1% DMDOS in 1 mol/L LiPF6-5% (质量分数) FEC-EC∶DEC∶DMC=3∶2∶5 | DMDOS[ | Si@C || LiNi0.8Co0.15Al0.05O2 | 0.2 C; 4.2 V | 85.5% after 100 cycles; 99.62% |
5% (质量分数) TEOSCN in 1 mol/L LiPF6-EC∶DEC (1∶1, 质量比) | TEOSCN[ | Si-Alloy || NMC622, (45 ℃) | 1 C; 4.2 V | 58.29% after 417 cycles; 100% |
5% (质量分数) VTMS in 1 mol/L LiPF6-EC∶DEC (3∶7, 质量比) | VTMS[ | Li || Si/C | 0.1 C; 1.5 V | 91.8% after 50 cycles; 99% |
2% NACA in 1 mol/L LiPF6-EC∶DEC (3∶7, 质量比) | NACA[ | Li || SiO x /C | 0.5 C; 1.5 V | 58% after 150 cycles; 99% |
3% [PIVM][TFSA] in 1 mol/L LiPF6 in EC∶DMC∶EMC (1∶1∶1, 质量比) | [PIVM][TFSA][ | Li || Si/C | 0.1 C; 1.5 V | 94.7% after 50 cycles; 84.8 %(ICE) |
2% (质量分数) CPI in 1 mol/L LiPF6-EC∶EMC (3∶7, 质量比) | CPI[ | Li || Si/G | 0.5 C; 1.5 V | 87.5% after 100 cycles; |
1% IEM in 1 mol/L LiPF6-9%FEC-EC∶ DEC∶DMC (1∶1∶1, 质量比) | IEM[ | Li || Si/G | 0.1 C; 1.5 V | 58% after 100 cycles; 91.25% (ICE) |
0.5% (质量分数) APS in 1 mol/L LiPF6-EC∶DEC (3∶7, 质量比) | APS[ | SiO x /C || NCM90 | 1 C; 4.3 V | 83.1% after 200 cycles; 71% (ICE) |
1 | JIN C B, LIU T F, SHENG O W, et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox[J]. Nature Energy, 2021, 6(4): 378-387. |
2 | TAN L W, WEI C L, ZHANG Y C, et al. LiF-rich and self-repairing interface induced by MgF2 engineered separator enables dendrite-free lithium metal batteries[J]. Chemical Engineering Journal, 2022, 442: 136243. |
3 | LI Z, HUANG J, YANN LIAW B, et al. A review of lithium deposition in lithium-ion and lithium metal secondary batteries[J]. Journal of Power Sources, 2014, 254: 168-182. |
4 | CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
5 | ARAVINDAN V, LEE Y S, MADHAVI S. Research progress on negative electrodes for practical Li-ion batteries: Beyond carbonaceous anodes[J]. Advanced Energy Materials, 2015, 5(13): 1402225. |
6 | ZHANG H, YANG Y, REN D S, et al. Graphite as anode materials: Fundamental mechanism, recent progress and advances[J]. Energy Storage Materials, 2021, 36: 147-170. |
7 | XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618. |
8 | WINTER M, BARNETT B, XU K. Before Li ion batteries[J]. Chemical Reviews, 2018, 118(23): 11433-11456. |
9 | LI P, ZHAO G Q, ZHENG X B, et al. Recent progress on silicon-based anode materials for practical lithium-ion battery applications[J]. Energy Storage Materials, 2018, 15: 422-446. |
10 | JIN Y, ZHU B, LU Z D, et al. Challenges and recent progress in the development of Si anodes for lithium-ion battery[J]. Advanced Energy Materials, 2017, 7(23): 1700715. |
11 | YANG M M, JIN L W, HE M Y, et al. SiOx@C composites obtained by facile synthesis as anodes for lithium and potassium-ion batteries with excellent electrochemical performance[J]. Applied Surface Science, 2021, 542: 148712. |
12 | GAO X Y, GAO Y, LI Q G, et al. Scalable synthesis of high-performance anode material SiOx/C for lithium-ion batteries by employing the Rochow reaction process[J]. Journal of Alloys and Compounds, 2022, 902: 163668. |
13 | MAN Q Y, AN Y L, LIU C K, et al. Interfacial design of silicon/carbon anodes for rechargeable batteries: A review[J]. Journal of Energy Chemistry, 2023, 76: 576-600. |
14 | CAO Z, ZHENG X Y, QU Q T, et al. Electrolyte design enabling a high-safety and high-performance Si anode with a tailored electrode-electrolyte interphase[J]. Advanced Materials, 2021, 33(38): 2103178. |
15 | AN W L, HE P, CHE Z Z, et al. Scalable synthesis of pore-rich Si/C@C core-shell-structured microspheres for practical long-life lithium-ion battery anodes[J]. ACS Applied Materials & Interfaces, 2022, 14(8): 10308-10318. |
16 | PELED E, MENKIN S. Review-SEI: Past, present and future[J]. Journal of the Electrochemical Society, 2017, 164(7): A1703-A1719. |
17 | GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. |
18 | GAUTHIER M, CARNEY T J, GRIMAUD A, et al. Electrode-electrolyte interface in Li-ion batteries: Current understanding and new insights[J]. The Journal of Physical Chemistry Letters, 2015, 6(22): 4653-4672. |
19 | HAREGEWOIN A M, WOTANGO A S, HWANG B J. Electrolyte additives for lithium ion battery electrodes: Progress and perspectives[J]. Energy & Environmental Science, 2016, 9(6): 1955-1988. |
20 | WANG Q S, JIANG L H, YU Y, et al. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect[J]. Nano Energy, 2019, 55: 93-114. |
21 | WANG J H, YAMADA Y, SODEYAMA K, et al. Fire-extinguishing organic electrolytes for safe batteries[J]. Nature Energy, 2018, 3(1): 22-29. |
22 | JIN Y T, KNEUSELS N J H, MARBELLA L E, et al. Understanding fluoroethylene carbonate and vinylene carbonate based electrolytes for Si anodes in lithium ion batteries with NMR spectroscopy[J]. Journal of the American Chemical Society, 2018, 140(31): 9854-9867. |
23 | SCHRODER K, ALVARADO J, YERSAK T A, et al. The effect of fluoroethylene carbonate as an additive on the solid electrolyte interphase on silicon lithium-ion electrodes[J]. Chemistry of Materials, 2015, 27(16): 5531-5542. |
24 | KIM K, PARK I, HA S Y, et al. Understanding the thermal instability of fluoroethylene carbonate in LiPF6-based electrolytes for lithium ion batteries[J]. Electrochimica Acta, 2017, 225: 358-368. |
25 | CHANG C C, HSU S H, JUNG Y F, et al. Vinylene carbonate and vinylene trithiocarbonate as electrolyte additives for lithium ion battery[J]. Journal of Power Sources, 2011, 196(22): 9605-9611. |
26 | FENG K, LI M, LIU W W, et al. Silicon-based anodes for lithium-ion batteries: From fundamentals to practical applications[J]. Small, 2018, 14(8): 1702737. |
27 | LUO W, CHEN X Q, XIA Y A, et al. Surface and interface engineering of silicon-based anode materials for lithium-ion batteries[J]. Advanced Energy Materials, 2017, 7(24): 1701083. |
28 | LI F, LIU J D, HE J, et al. Additive-assisted hydrophobic Li+-solvated structure for stabilizing dual electrode electrolyte interphases through suppressing LiPF6 hydrolysis[J]. Angewandte Chemie (International Ed in English), 2022, 61(27): e202205091. |
29 | DOMI Y, USUI H, SHIMIZU M, et al. Effect of film-forming additive on electrochemical performance of silicon negative-electrode in lithium-ion batteries[J]. International Journal of Electrochemical Science, 2015, 10(11): 9678-9686. |
30 | RYU Y G, LEE S, MAH S, et al. Electrochemical behaviors of silicon electrode in lithium salt solution containing alkoxy silane additives[J]. Journal of the Electrochemical Society, 2008, 155(8): A583. |
31 | TAN J A, MATZ J, DONG P, et al. A growing appreciation for the role of LiF in the solid electrolyte interphase[J]. Advanced Energy Materials, 2021, 11(16): 2100046. |
32 | CAO W Z, CHEN W M, LU M, et al. In situ generation of Li3N concentration gradient in 3D carbon-based lithium anodes towards highly-stable lithium metal batteries[J]. Journal of Energy Chemistry, 2023, 76: 648-656. |
33 | KIM K, MA H, PARK S, et al. Electrolyte-additive-driven interfacial engineering for high-capacity electrodes in lithium-ion batteries: Promise and challenges[J]. ACS Energy Letters, 2020, 5(5): 1537-1553. |
34 | XU M Q, HAO L S, LIU Y L, et al. Experimental and theoretical investigations of dimethylacetamide (DMAc) as electrolyte stabilizing additive for lithium ion batteries[J]. The Journal of Physical Chemistry C, 2011, 115(13): 6085-6094. |
35 | LIU G P, JIAO T P, CHENG Y, et al. Interfacial enhancement of silicon-based anode by a lactam-type electrolyte additive[J]. ACS Applied Energy Materials, 2021, 4(9): 10323-10332. |
36 | CHENG H R, SUN Q J, LI L L, et al. Emerging era of electrolyte solvation structure and interfacial model in batteries[J]. ACS Energy Letters, 2022, 7(1): 490-513. |
37 | WANG K, NI W B, WANG L G, et al. Lithium nitrate regulated carbonate electrolytes for practical Li-metal batteries: Mechanisms, principles and strategies[J]. Journal of Energy Chemistry, 2023, 77: 581-600. |
38 | QI W B, BEN L B, YU H L, et al. Improving the rate capability of a SiOx/graphite anode by adding LiNO3[J]. Progress in Natural Science: Materials International, 2020, 30(3): 321-327. |
39 | LU H, ZENG F B, MA Y T, et al. Triphenyl borate as an effective film-modification additive for regulating the solid electrolyte interphase formed on graphite and silicon based anode[J]. Materials Today Communications, 2023, 35: 105619. |
40 | KARKAR Z, HOUACHE M S E, NIKETIC S, et al. Use of polymeric borate-ester electrolyte additives to stabilize the interface and enhance the cycling performance of silicon/graphite composites in lithium-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(11): 14081-14091. |
41 | ZHENG J M, LOCHALA J A, KWOK A, et al. Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications[J]. Advanced Science, 2017, 4(8): 1700032. |
42 | BORODIN O, SELF J, PERSSON K A, et al. Uncharted waters: Super-concentrated electrolytes[J]. Joule, 2020, 4(1): 69-100. |
43 | CAO X A, JIA H, XU W, et al. Review-Localized high-concentration electrolytes for lithium batteries[J]. Journal of the Electrochemical Society, 2021, 168(1): 010522. |
44 | GALVEZ-ARANDA D E, SEMINARIO J M. Simulations of a LiF solid electrolyte interphase cracking on silicon anodes using molecular dynamics[J]. Journal of the Electrochemical Society, 2018, 165(3): A717-A730. |
45 | ZENG G F, AN Y L, XIONG S L, et al. Nonflammable fluorinated carbonate electrolyte with high salt-to-solvent ratios enables stable silicon-based anode for next-generation lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23229-23235. |
46 | GHAUR A, PESCHEL C, DIENWIEBEL I, et al. Effective SEI formation via phosphazene-based electrolyte additives for stabilizing silicon-based lithium-ion batteries [J]. Advanced Energy Materials, 2023, 13(26): 2203503. |
47 | HUANG L B, LI G, LU Z Y, et al. trans-difluoroethylene carbonate as an electrolyte additive for microsized SiOx@C anodes[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 24916-24924. |
48 | HA Y, MARTIN T R, FRISCO S, et al. Evaluating the effect of electrolyte additive functionalities on NMC622/Si cell performance[J]. Journal of the Electrochemical Society, 2022, 169(7): 070515. |
49 | WANG E Y, LIU Y X, DONG J Y, et al. Construction of stable SEI film on Si@C high-loading electrodes by dimethoxydimethylsilane electrolyte additives[J]. Ionics, 2022, 28(4): 1625-1634. |
50 | AUPPERLE F, VON ASPERN N, BERGHUS D, et al. The role of electrolyte additives on the interfacial chemistry and thermal reactivity of Si-anode-based Li-ion battery[J]. ACS Applied Energy Materials, 2019, 2(9): 6513-6527. |
51 | WANG J P, ZHANG L, ZHANG H T. Effects of electrolyte additive on the electrochemical performance of Si/C anode for lithium-ion batteries[J]. Ionics, 2018, 24(11): 3691-3698. |
52 | CAI Y J, XU T H, VON SOLMS N, et al. Multifunctional imidazolium-based ionic liquid as additive for silicon/carbon lithium ion batteries[J]. Electrochimica Acta, 2020, 340: 135990. |
53 | WANG R H, LI X H, WANG Z X, et al. Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: P-Toluenesulfonyl isocyanate as electrolyte additive[J]. Nano Energy, 2017, 34: 131-140. |
54 | XIAO Z, WANG R H, LI Y, et al. Electrochemical analysis for enhancing interface layer of spinel LiNi0.5Mn1.5O4 using p-toluenesulfonyl isocyanate as electrolyte additive[J]. Frontiers in Chemistry, 2019, 7: 591. |
55 | LIU G P, XU N B, ZOU Y E, et al. Stabilizing Ni-rich LiNi0.83Co0.12Mn0.05O2 with cyclopentyl isocyanate as a novel electrolyte additive[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 12069-12078. |
56 | LI R L, FU C K, CUI B H, et al. Constructing highly stable solid electrolyte interphase for Si@Graphene anodes by coupling 2-isocyanatoethyl methacrylate and fluoroethylene carbonate[J]. Journal of Power Sources, 2023, 554: 232337. |
57 | WANG J E, LI S Y, ZHANG J J, et al. Improving toleration of volume expansion of silicon-based anode by constructing a flexible solid-electrolyte interface film via lithium difluoro(bisoxalato) phosphate electrolyte additive[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(46): 15199-15210. |
58 | LIU G P, GAO J A, XIA M, et al. Strengthening the interfacial stability of the silicon-based electrode via an electrolyte Additive-Allyl phenyl sulfone[J]. ACS Applied Materials & Interfaces, 2022, 14(33): 38281-38290. |
59 | LIU J D, WU M G, LI X, et al. Amide-functional, Li3N/LiF-rich heterostructured electrode electrolyte interphases for 4.6 V Li||LiCoO2 batteries[J]. Advanced Energy Materials, 2023, 13(15): 230084 . |
60 | ZHOU P, XIA Y C, HOU W H, et al. Rationally designed fluorinated amide additive enables the stable operation of lithium metal batteries by regulating the interfacial chemistry[J]. Nano Letters, 2022, 22(14): 5936-5943. |
[1] | 姜媛媛, 屠芳芳, 张芳平, 王盈来, 蔡佳文, 杨东辉, 李艳红, 相佳媛, 夏新辉, 傅继澎. 高性能磷酸铁锂电池补锂技术及机制[J]. 储能科学与技术, 2024, 13(5): 1435-1442. |
[2] | 贾铭勋, 吴桐, 杨道通, 秦小茜, 刘景海, 段莉梅. 锂硫电池电解液多功能添加剂:作用机制及先进表征[J]. 储能科学与技术, 2024, 13(1): 36-47. |
[3] | 时文超, 刘宇, 张博冕, 李琪, 韩春华, 麦立强. 电解液添加剂稳定水系电池锌负极界面的研究进展[J]. 储能科学与技术, 2023, 12(5): 1589-1603. |
[4] | 牛少军, 吴凯, 朱国斌, 王艳, 曲群婷, 郑洪河. 锂离子电池硅基负极循环过程中的膨胀应力[J]. 储能科学与技术, 2022, 11(9): 2989-2994. |
[5] | 于春辉, 何姿颖, 张晨曦, 林贤清, 肖哲熙, 魏飞. 硅基负极与电解液化学反应的分析与抑制策略[J]. 储能科学与技术, 2022, 11(6): 1749-1759. |
[6] | 许辉勇, 李远宏, 张志萍, 范亚飞, 胡仁宗. 硅基负极软包动力电池针刺热失控特性研究[J]. 储能科学与技术, 2021, 10(1): 218-228. |
[7] | 余晨露, 田晓华, 张哲娟, 孙 卓. 锂离子电池硅基负极比容量提升的研究进展[J]. 储能科学与技术, 2020, 9(6): 1614-1628. |
[8] | 梁大宇, 包婷婷, 夏昕, 杨茂萍, 李道聪. 锂离子电池硅基负极新型黏结剂研究进展[J]. 储能科学与技术, 2018, 7(6): 1203-1210. |
[9] | 李放放,陈仕谋. 高压锂离子电池电解液添加剂研究进展[J]. 储能科学与技术, 2016, 5(4): 436-442. |
[10] | 郑杰允, 李泓. 锂电池基础科学问题(V)----电池界面[J]. 储能科学与技术, 2013, 2(5): 503-513. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||