储能科学与技术 ›› 2024, Vol. 13 ›› Issue (1): 299-310.doi: 10.19799/j.cnki.2095-4239.2023.0613
曾坤1(), 郑晓妍1, 龚慧玲2, 邹博1, 陈凯1, 晏忠钠1()
收稿日期:
2023-09-08
修回日期:
2023-10-16
出版日期:
2024-01-05
发布日期:
2024-01-22
通讯作者:
晏忠钠
E-mail:1026219181@qq.com;yanzn@csust.edu.cn
作者简介:
曾坤(2001—),男,本科,研究方向为锂负极液态金属电池,E-mail:1026219181@qq.com;
基金资助:
Kun ZENG1(), Xiaoyan ZHENG1, Huiling GONG2, Bo ZOU1, Kai CHEN1, Zhongna YAN1()
Received:
2023-09-08
Revised:
2023-10-16
Online:
2024-01-05
Published:
2024-01-22
Contact:
Zhongna YAN
E-mail:1026219181@qq.com;yanzn@csust.edu.cn
摘要:
液态金属电池由于具有低成本、易于组装和扩容等优点,且在充放电过程中能够有效地避免枝晶生长和电极结构变形等问题,在规模化电网储能领域具有显著优势。本文系统地综述了液体金属电池的工作原理、优缺点、电池材料(包括电极和电解质)的选取原则以及近期液态金属电池电极材料的研究进展,着重介绍了Li‖Te体系、Li‖Bi体系、Li‖Sb体系、Li‖Sb-X(X=Pb,Sn)体系以及Li‖Bi-X(X=Sn,Pb)体系等以金属锂为负极的液态金属电池关键材料体系,重点分析了上述材料体系的电化学储能特性、安全性、循环稳定性以及性能提升策略,并对比分析了上述材料体系在大规模储能应用时存在的优势与不足。此外,综述了Li基液态金属电池在熔盐电解质、高温密封及腐蚀防护、电池热管理等方面存在的问题以及面临的技术难题。最后,展望了液态金属电池正、负极材料的主要发展方向。综合分析表明,基于Li负极的液态金属电池具有低熔点、低成本、高库仑效率以及高放电电压等优点。
中图分类号:
曾坤, 郑晓妍, 龚慧玲, 邹博, 陈凯, 晏忠钠. 基于锂负极的液态金属电池研究进展[J]. 储能科学与技术, 2024, 13(1): 299-310.
Kun ZENG, Xiaoyan ZHENG, Huiling GONG, Bo ZOU, Kai CHEN, Zhongna YAN. Research progress in liquid metal batteries based on lithium negative electrodes[J]. Energy Storage Science and Technology, 2024, 13(1): 299-310.
表1
混合熔盐电解质相关性能参数"
电极 | 电解质组成 | 比例(摩尔比) | 熔点/℃ | 密度/(g/cm3) | 电导率/(S/cm) | 参考文献 |
---|---|---|---|---|---|---|
Li | LiCl-KCl | 41∶59 | 353 | [ | ||
LiCl-LiF | 70∶30 | 501 | 1.8 | [ | ||
LiF-LiCl-LiI | 20∶50∶30 | 430 | [ | |||
LiF-LiCl-LiBr | 22∶31∶47 | 443 | 2.7 | 3.0 | [ | |
LiBr-KBr | 60∶40 | 320 | [ | |||
LiF-LiBr-KBr | 3∶63∶34 | 312 | [ | |||
Na | NaF-NaCl-NaI | 15∶32∶53 | 530 | 2.54 | 1.7~2.0 | [ |
NaOH-NaI | 80∶20 | 220 | [ | |||
Ca | LiCl-NaCl-CaCl2 | 38∶27∶35 | 450 | 1.85 | 2.6 | [ |
LiCl-NaCl-CaCl2-BaCl2 | 29∶20∶35∶16 | 390 | 2.24 | 1.8 | [ | |
Zn | ZnCl2 | 100 | 292 | [ | ||
ZnCl2-KCl | 50∶50 | 230 | [ |
1 | 黄雨涵, 丁涛, 李雨婷, 等. 碳中和背景下能源低碳化技术综述及对新型电力系统发展的启示[J]. 中国电机工程学报, 2021, 41(S1): 28-51. |
HUANG Y H, DING T, LI Y T, et al. Decarbonization technologies and inspirations for the development of novel power systems in the context of carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(S1): 28-51. | |
2 | 钱建国, 孔飘红, 章晓锘. 双碳背景下新型电力系统储能设计与运行[J]. 储能科学与技术, 2022, 11(12): 4102-4103. |
QIAN J G, KONG P H, ZHANG X N. Energy storage design and operation of new power system under the background of double carbon[J]. Energy Storage Science and Technology, 2022, 11(12): 4102-4103. | |
3 | 张宏霞, 张衍杰, 马茜, 等. "双碳"目标下新能源产业发展趋势[J]. 储能科学与技术, 2022, 11(5): 1677-1678. |
ZHANG H X, ZHANG Y J, MA (Q /X), et al. Development trend of new energy industry under the goal of "double carbon"[J]. Energy Storage Science and Technology, 2022, 11(5): 1677-1678. | |
4 | FAISAL M, HANNAN M A, KER P J, et al. Review of energy storage system technologies in microgrid applications: Issues and challenges[J]. IEEE Access, 2018, 6: 35143-35164. |
5 | 杨水丽, 来小康, 丁涛, 等. 新型储能技术在弹性电网中的应用与展望[J]. 储能科学与技术, 2023, 12(2): 515-528. |
YANG S L, LAI X K, DING T, et al. Application and prospect of new energy storage technologies in resilient power systems[J]. Energy Storage Science and Technology, 2023, 12(2): 515-528. | |
6 | 申洪, 周勤勇, 刘耀, 等. 碳中和背景下全球能源互联网构建的关键技术及展望[J]. 发电技术, 2021, 42(1): 8-19. |
SHEN H, ZHOU Q Y, LIU Y, et al. Key technologies and prospects for the construction of global energy Internet under the background of carbon neutral[J]. Power Generation Technology, 2021, 42(1): 8-19. | |
7 | 许守平, 李相俊, 惠东. 大规模储能系统发展现状及示范应用综述[J]. 电网与清洁能源, 2013, 29(8): 94-100, 108. |
XU S P, LI X J, HUI D. A survey of the development and demonstration application of large-scale energy storage[J]. Power System and Clean Energy, 2013, 29(8): 94-100, 108. | |
8 | 蒋凯, 李浩秒, 李威, 等. 几类面向电网的储能电池介绍[J]. 电力系统自动化, 2013, 37(1): 47-53. |
JIANG K, LI H M, LI W, et al. On several battery technologies for power grids[J]. Automation of Electric Power Systems, 2013, 37(1): 47-53. | |
9 | YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613. |
10 | ROBERTS B P, SANDBERG C. The role of energy storage in development of smart grids[J]. Proceedings of the IEEE, 2011, 99(6): 1139-1144. |
11 | 林靖, 王晟, 李浩秒, 等. 液态金属电池的温度特性[J]. 中国电机工程学报, 2021, 41(4): 1458-1468, 1551. |
LIN J, WANG S, LI H M, et al. Temperature characteristics of liquid metal batteries[J]. Proceedings of the CSEE, 2021, 41(4): 1458-1468, 1551. | |
12 | CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
13 | TIAN Y H, ZHANG S Q. The renaissance of liquid metal batteries[J]. Matter, 2020, 3(6): 1824-1826. |
14 | MENG J W, ZHANG Y, ZHOU X J, et al. Li2CO3-affiliative mechanism for air-accessible interface engineering of garnet electrolyte via facile liquid metal painting[J]. Nature Communications, 2020, 11: 3716. |
15 | MENG J W, LI C L. Planting CuGa2 seeds assisted with liquid metal for selective wrapping deposition of lithium[J]. Energy Storage Materials, 2021, 37: 466-475. |
16 | ZHANG Y, MENG J W, CHEN K Y, et al. Garnet-based solid-state lithium fluoride conversion batteries benefiting from eutectic interlayer of superior wettability[J]. ACS Energy Letters, 2020, 5(4): 1167-1176. |
17 | LIU Y Y, MENG J W, LEI M, et al. Alloyable viscous fluid for interface welding of garnet electrolyte to enable highly reversible fluoride conversion solid state batteries[J]. Advanced Functional Materials, 2023, 33(4): 2208013. |
18 | WU S, ZHANG X, WANG R Z, et al. Progress and perspectives of liquid metal batteries[J]. Energy Storage Materials, 2023, 57: 205-227. |
19 | 刘奇, 刘双宇, 王博, 等. 液态金属电池研究进展[J]. 电源技术, 2019, 43(12): 2053-2057. |
LIU Q, LIU S Y, WANG B, et al. Research progress in liquid metal batteries[J]. Chinese Journal of Power Sources, 2019, 43(12): 2053-2057. | |
20 | KIM H, BOYSEN D A, NEWHOUSE J M, et al. Liquid metal batteries: Past, present, and future[J]. Chemical Reviews, 2013, 113(3): 2075-2099. |
21 | LI H M, YIN H Y, WANG K L, et al. Liquid metal electrodes for energy storage batteries[J]. Advanced Energy Materials, 2016, 6(14): 2075-2099. |
22 | 黎朝晖, 朱方方, 李浩秒, 等. 液态金属电池研究进展[J]. 储能科学与技术, 2017, 6(5): 981-989. |
LI Z H, ZHU F F, LI H M, et al. Research progresses of liquid metal batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 981-989. | |
23 | 孟潇, 张伟. 合金电极液态金属电池研究进展[J]. 电源技术, 2022, 46(5): 480-483. |
MENG X, ZHANG W. Research progress of liquid metal batteries with alloy electrodes[J]. Chinese Journal of Power Sources, 2022, 46(5): 480-483. | |
24 | KANE M M, NEWHOUSE J M, SADOWAY D R. Electrochemical determination of the thermodynamic properties of lithium-antimony alloys[J]. Journal of the Electrochemical Society, 2014, 162(3): A421-A425. |
25 | NING X H, PHADKE S, CHUNG B, et al. Self-healing Li-Bi liquid metal battery for grid-scale energy storage[J]. Journal of Power Sources, 2015, 275: 370-376. |
26 | WANG K L, JIANG K, CHUNG B, et al. Lithium-antimony-lead liquid metal battery for grid-level energy storage[J]. Nature, 2014, 514(7522): 348-350. |
27 | NEWHOUSE J M. Modeling the operating voltage of liquid metal battery cells[D]. Massachusetts Institute of Technology, 2014. |
28 | MASSET P J, GUIDOTTI R A. Thermal activated ("thermal") battery technology[J]. Journal of Power Sources, 2008, 178(1): 456-466. |
29 | CAIRNS E, CROUTHAMEL C, FISCHER A K, et al. Galvanic cells with fused-salt electrolytes[R]. Argonne National Lab., Ⅲ., 1967. |
30 | SPATOCCO B L, OUCHI T, LAMBOTTE G, et al. Low-temperature molten salt electrolytes for membrane-free sodium metal batteries[J]. Journal of the Electrochemical Society, 2015, 162(14): A2729-A2736. |
31 | KIM H, BOYSEN D A, OUCHI T, et al. Calcium-bismuth electrodes for large-scale energy storage (liquid metal batteries)[J]. Journal of Power Sources, 2013, 241: 239-248. |
32 | OUCHI T, KIM H, NING X H, et al. Calcium-antimony alloys as electrodes for liquid metal batteries[J]. Journal of the Electrochemical Society, 2014, 161(12): A1898-A1904. |
33 | BRADWELL D J. Liquid metal batteries: ambipolar electrolysis and alkaline earth electroalloying cells[D]. Massachusetts Institute of Technology, 2011. |
34 | HOLUBOWITCH N E, MANEK S E, LANDON J, et al. Cathode candidates for zinc-based thermal-electrochemical energy storage[J]. International Journal of Energy Research, 2016, 40(3): 393-399. |
35 | HOLUBOWITCH N E, MANEK S E, LANDON J, et al. Molten zinc alloys for lower temperature, lower cost liquid metal batteries[J]. Advanced Materials Technologies, 2016, 1(3): 1600035. |
36 | HOLUBOWITCH N, MANEK S, LANDON J, et al. Zn-Sn electrochemical cells with molten salt eutectic electrolytes and their potential for energy storage applications[J]. ECS Transactions, 2014, 64(4): 439-452. |
37 | MATSUNAGA S, ISHIGURO T, TAMAKI S. Thermodynamic properties of liquid Na-Pb alloys[J]. Journal of Physics F: Metal Physics, 1983, 13(3): 587-595. |
38 | NEALE F E, CUSACK N E. Thermodynamic properties of liquid sodium-caesium alloys[J]. Journal of Physics F: Metal Physics, 1982, 12(12): 2839-2850. |
39 | WEAVER R D, SMITH S W, WILLMANN N L. The Sodium∣Tin liquid-metal cell[J]. Journal of the Electrochemical Society, 1962, 109(8): 653. |
40 | BRADWELL D J, KIM H, SIRK A H C, et al. Magnesium-antimony liquid metal battery for stationary energy storage[J]. Journal of the American Chemical Society, 2012, 134(4): 1895-1897. |
41 | LEUNG P, HECK S C, AMIETSZAJEW T, et al. Performance and polarization studies of the magnesium-antimony liquid metal battery with the use of in-situ reference electrode[J]. RSC Advances, 2015, 5(101): 83096-83105. |
42 | THACKERAY M M, WOLVERTON C, ISAACS E D. Electrical energy storage for transportation-Approaching the limits of, and going beyond, lithium-ion batteries[J]. Energy & Environmental Science, 2012, 5(7): 7854-7863. |
43 | UKSHE E A, BUKUN N G. The dissolution of metals in fused halides[J]. Russian Chemical Reviews, 1961, 30(2): 90-107. |
44 | DWORKIN A S, BRONSTEIN H R, BREDIG M A. Miscibility of metals with salts. vi. lithium-lithium halide systems1[J]. The Journal of Physical Chemistry, 1962, 66(3): 572-573. |
45 | LI H M, WANG K L, ZHOU H, et al. Tellurium-tin based electrodes enabling liquid metal batteries for high specific energy storage applications[J]. Energy Storage Materials, 2018, 14: 267-271. |
46 | WEPPNER W, HUGGINS R A. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb[J]. Journal of the Electrochemical Society, 1977, 124(10): 1569-1578. |
47 | XIE H L, CHEN Z Y, CHU P, et al. An elaborate low-temperature electrolyte design towards high-performance liquid metal battery[J]. Journal of Power Sources, 2022, 536: 231527. |
48 | YAN S, ZHOU X B, LI H M, et al. Utilizing in situ alloying reaction to achieve the self-healing, high energy density and cost-effective Li||Sb liquid metal battery[J]. Journal of Power Sources, 2021, 514: 230578. |
49 | LI H M, WANG K L, CHENG S J, et al. High performance liquid metal battery with environmentally friendly antimony-tin positive electrode[J]. ACS Applied Materials & Interfaces, 2016, 8(20): 12830-12835. |
50 | ZHAO W, LI P, LIU Z W, et al. High-performance antimony-bismuth-tin positive electrode for liquid metal battery[J]. Chemistry of Materials, 2018, 30(24): 8739-8746. |
51 | CUI K X, ZHAO W, LI S W, et al. Low-temperature and high-energy-density Li-based liquid metal batteries based on LiCl-KCl molten salt electrolyte[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(5): 1871-1879. |
52 | XIE H L, CHU P, YANG M N, et al. A novel Sb-Zn electrode with ingenious discharge mechanism towards high-energy-density and kinetically accelerated liquid metal battery[J]. Energy Storage Materials, 2023, 54: 20-29. |
53 | DAI T, ZHAO Y, NING X H, et al. Capacity extended bismuth-antimony cathode for high-performance liquid metal battery[J]. Journal of Power Sources, 2018, 381: 38-45. |
54 | KIM J, SHIN D, JUNG Y, et al. LiCl-LiI molten salt electrolyte with bismuth-lead positive electrode for liquid metal battery[J]. Journal of Power Sources, 2018, 377: 87-92. |
55 | 李浩秒, 周浩, 王康丽, 等. 液态金属电极的电化学储能应用[J]. 电化学, 2020, 26(5): 663-682. |
LI H M, ZHOU H, WANG K L, et al. Liquid metal electrodes for electrochemical energy storage technologies[J]. Journal of Electrochemistry, 2020, 26(5): 663-682. | |
56 | ZHANG J, HUANG J, LIU R X, et al. Corrosion behaviour of AlN ceramics in LiF-LiCl-LiBr-Li molten salt at 500 ℃[J]. Corrosion Science, 2021, 190: 109672. |
57 | LI B R, WEN B, CHEN H Z, et al. Corrosion behaviour and related mechanism of lithium vapour on aluminium nitride ceramic[J]. Corrosion Science, 2021, 178: 109058. |
58 | MASSET P. Iodide-based electrolytes: A promising alternative for thermal batteries[J]. Journal of Power Sources, 2006, 160(1): 688-697. |
59 | TORTORELLI P F, CHOPRA O K. Corrosion and compatibility considerations of liquid metals for fusion reactor applications[J]. Journal of Nuclear Materials, 1981, 103: 621-632. |
60 | MENG X C, ZUO G Z, REN J, et al. Study of the corrosion behaviors of 304 austenite stainless steel specimens exposed to static liquid lithium at 600 K[J]. Journal of Nuclear Materials, 2016, 480: 25-31. |
61 | 蒋凯, 黎朝晖, 王康丽, 等. 耐腐蚀密封绝缘装置及中高温储能电池: CN205960043U[P]. 2017-02-15. |
JIANG K, LI Z H, WANG K L, et al. Corrosion-resistant sealed insulation device and well high temperature energy storage battery: CN205960043U[P]. 2017-02-15.. | |
62 | GUO Z L, ZHANG Y, HE Y L, et al. Thermal power characteristics of a liquid metal battery[J]. Energy Reports, 2021, 7: 1221-1230. |
63 | GUO Z L, XU C, LI W, et al. Numerical study on the thermal management system of a liquid metal battery module[J]. Journal of Power Sources, 2018, 392: 181-192. |
64 | ZHANG Y, WANG S, GUO Z L, et al. A multi-input single-output thermal management system design for liquid metal batteries[J]. Applied Thermal Engineering, 2023, 219: 119575. |
[1] | 张楚, 陈栋才, 陈湘萍, 蔡永翔. 多应用场景下储能最优配置经济性效益分析[J]. 储能科学与技术, 2024, 13(6): 2078-2088. |
[2] | 刘青宜. 钠离子电池的储能机制与性能提升策略[J]. 储能科学与技术, 2024, 13(6): 1871-1873. |
[3] | 闫苏, 钟芳芳, 刘俊伟, 丁美, 贾传坤. 高能量密度液流电池关键材料与先进表征[J]. 储能科学与技术, 2024, 13(1): 143-156. |
[4] | 欧阳意梅, 赵蒙蒙, 钟贵明, 彭章泉. 电化学储能界面的核磁共振谱学研究方法[J]. 储能科学与技术, 2024, 13(1): 157-166. |
[5] | 张力菠, 王格格. 电化学储能电池技术主题识别、演化及风险分析[J]. 储能科学与技术, 2023, 12(8): 2680-2692. |
[6] | 李凌萱, 王子轩, 赵辰孜, 张睿, 卢洋, 黄佳琦, 陈爱兵, 张强. 复合金属锂负极的定量模型新进展[J]. 储能科学与技术, 2023, 12(7): 2059-2078. |
[7] | 赵光金, 李博文, 胡玉霞, 董锐锋, 王放放. 退役动力电池梯次利用技术及工程应用概述[J]. 储能科学与技术, 2023, 12(7): 2319-2332. |
[8] | 黄渭彬, 张彪, 范金成, 杨伟, 邹汉波, 陈胜洲. ZIF-8复合PEO基固态电解质的制备与改性研究[J]. 储能科学与技术, 2023, 12(4): 1083-1092. |
[9] | 程志翔, 曹伟, 户波, 程云芳, 李鑫, 姜丽华, 金凯强, 王青松. 储能用大容量磷酸铁锂电池热失控行为及燃爆传播特性[J]. 储能科学与技术, 2023, 12(3): 923-933. |
[10] | 张宣梁, 何霆, 朱文龙, 王屾, 曾建华, 徐泉, 牛迎春. 基于多循环特征的储能电池SOH估计模型[J]. 储能科学与技术, 2023, 12(11): 3488-3498. |
[11] | 董乐贤, 郑群, 黄悦, 田志鹏, 刘建平, 王超, 梁波, 雷励斌. 管状固体氧化物燃料电池前沿技术研究进展[J]. 储能科学与技术, 2023, 12(1): 131-138. |
[12] | 刘阳, 滕卫军, 谷青发, 孙鑫, 谭宇良, 方知进, 李建林. 规模化多元电化学储能度电成本及其经济性分析[J]. 储能科学与技术, 2023, 12(1): 312-318. |
[13] | 沈馨, 张睿, 赵辰孜, 武鹏, 张羽彤, 张俊东, 范丽珍, 刘全兵, 陈爱兵, 张强. 金属锂电池中力-电化学机制研究进展[J]. 储能科学与技术, 2022, 11(9): 2781-2797. |
[14] | 李泓, 张强. 蓄势赋能谋发展,勇毅笃行谱新篇[J]. 储能科学与技术, 2022, 11(9): 2691-2701. |
[15] | 曹志成, 周开运, 朱家立, 刘高明, 严慜, 汤舜, 曹元成, 程时杰, 张炜鑫. 锂离子电池储能系统消防技术的中国专利分析[J]. 储能科学与技术, 2022, 11(8): 2664-2670. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||