储能科学与技术 ›› 2024, Vol. 13 ›› Issue (1): 311-324.doi: 10.19799/j.cnki.2095-4239.2023.0641
戴雪娇1(), 闫婕1, 王管1, 董浩天1, 蒋丹枫1, 魏泽威1, 孟凡星2, 刘松涛2, 张海涛1,3()
收稿日期:
2023-09-18
修回日期:
2023-10-19
出版日期:
2024-01-05
发布日期:
2024-01-22
通讯作者:
张海涛
E-mail:daixuejiao@ipe.ac.cn;htzhang@ipe.ac.cn
作者简介:
戴雪娇(1995—),女,硕士,工程师,研究方向为锂离子电池材料,E-mail:daixuejiao@ipe.ac.cn;
基金资助:
Xuejiao DAI1(), Jie YAN1, Guan WANG1, Haotian DONG1, Danfeng JIANG1, Zewei WEI1, Fanxing MENG2, Songtao LIU2, Haitao ZHANG1,3()
Received:
2023-09-18
Revised:
2023-10-19
Online:
2024-01-05
Published:
2024-01-22
Contact:
Haitao ZHANG
E-mail:daixuejiao@ipe.ac.cn;htzhang@ipe.ac.cn
摘要:
社会科技的进步也推动了锂电池技术快速发展。锂离子电池的性能受温度影响较大,在低温条件下工作时其性能衰减严重,因此,提高锂离子电池的低温性能成为研究热点。本文综述了基于铌基电极材料的低温锂离子电池近年的研究进展以及影响其低温性能的因素,从电极材料和电解液两个方面总结了改善锂离子电池低温性能的方法。电极材料方面主要介绍了铌基材料的晶体结构和电化学性质、烧结对于铌基材料结构及性能的影响、铌基材料的修饰改性研究以及含铌氧化物低温电化学性能,结果说明了铌基材料独特的赝电容结构能促进离子和电子传导,异质原子的掺杂及其他材料的复合能够使其结构更加稳定,带隙变窄,载流子密度增加,使倍率性能得到提高,从而提高了材料的低温性能;电解液方面从溶剂、添加剂以及锂盐三方面介绍了匹配铌基负极的低温电解液的研究进展,提出采用多元溶剂体系与多种添加剂协同作用可以改善电解液对锂离子电池低温性能的影响,并且大部分线性羧酸酯类溶剂熔、沸点较低,蒸气压较大,能有效改善电池的低温性能。本综述可为设计在低温下具有优异性能的锂离子电池负极材料提供指导。
中图分类号:
戴雪娇, 闫婕, 王管, 董浩天, 蒋丹枫, 魏泽威, 孟凡星, 刘松涛, 张海涛. 铌基低温电池关键材料研究进展[J]. 储能科学与技术, 2024, 13(1): 311-324.
Xuejiao DAI, Jie YAN, Guan WANG, Haotian DONG, Danfeng JIANG, Zewei WEI, Fanxing MENG, Songtao LIU, Haitao ZHANG. Research progress of key materials for niobium-based low temperature batteries[J]. Energy Storage Science and Technology, 2024, 13(1): 311-324.
表1
铌基氧化物修饰改性方法[39-46]"
修饰改性方法 | 合成方法 | 电极材料 | 电化学性能 | 参考文献 |
---|---|---|---|---|
掺杂金属颗粒 | 球磨 | Cu0.02Ti0.94Nb2.04O7 | 315 mAh/g @ 0.1 C | [ |
球磨 | Ru0.01Ti0.99Nb2O7 | 351 mAh/g @ 0.1 C | [ | |
溶剂热 | Mo-TNO | 190 mAh/g @ 10 C | [ | |
复合碳基材料 | 溶剂热 | TiNb2O7/CNT-KB | 328 mAh/g @ 0.1 C | [ |
溶剂热 | TiNb2O7/C | 200 mAh/g @ 30 C | [ | |
溶剂热 | ACC@TNO | 356 mAh/g @ 0.1 C | [ | |
改变形貌 | 溶剂热 | MS-TNO NS | 349 mAh/g @ 1 C | [ |
溶剂热+静电纺丝 | WS2@TiNb2O7 HNs | 660 mAh/g @ 2 C | [ |
1 | 金明钢, 赵新兵, 沈垚, 等. 低温锂离子电池研究进展[J]. 电源技术, 2007, 131(11), 930-933. |
JIN M G, ZHAO X B, SHEN Y, et al. Development progress of low-temperature lithium-ion batteries[J]. Chinese Journal of Power Sources, 2007, 31(11): 930-933. | |
2 | WANG C Y, ZHANG G S, GE S H, et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529(7587): 515-518. |
3 | YANG Y, RUSTOMJI C S, MENG Y S. Liquefied gas electrolytes for electrochemical energy storage devices[J]. ECS Meeting Abstracts, 2017, (1): 68. |
4 | FAN X L, JI X, CHEN L, et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents[J]. Nature Energy, 2019, 4(10): 882-890. |
5 | ZHANG S S, XU K, JOW T R. A new approach toward improved low temperature performance of Li-ion battery[J]. Electrochemistry Communications, 2002, 4(11): 928-932. |
6 | DONG X L, GUO Z W, GUO Z Y, et al. Organic batteries operated at -70℃[J]. Joule, 2018, 2(5): 902-913. |
7 | 田君, 胡道中, 王一拓, 等. 低温锂离子启动电池用电解液及电极材料综述[J]. 电源技术, 2019, 43(4): 677-679. |
TIAN J, HU D Z, WANG Y T, et al. Application prospects of electrolytes and electrode materials for low-temperature lithium-ion starting batteries[J]. Chinese Journal of Power Sources, 2019, 43(4): 677-679. | |
8 | XIAO L F, CAO Y L, AI X P, et al. Optimization of EC-based multi-solvent electrolytes for low temperature applications of lithium-ion batteries[J]. Electrochimica Acta, 2004, 49(27): 4857-4863. |
9 | PLICHTA E J, BEHL W K. A low-temperature electrolyte for lithium and lithium-ion batteries[J]. Journal of Power Sources, 2000, 88(2): 192-196. |
10 | MANDAL B K, PADHI A K, SHI Z, et al. New low temperature electrolytes with thermal runaway inhibition for lithium-ion rechargeable batteries[J]. Journal of Power Sources, 2006, 162(1): 690-695. |
11 | 洪波, 闫霄林, 洪树, 等. 宽温域锂离子电池功能电解液的研究进展[J]. 中国有色金属学报, 2017, 27(6): 1208-1221. |
HONG B, YAN X L, HONG S, et al. Review of functional electrolyte for lithium-ion battery working in wide temperature scope[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(6): 1208-1221. | |
12 | 周立超, 姜楠, 燕思潼, 等. 锂离子动力电池低温电解液研究及优化进展[J]. 电源技术, 2021, 45(12): 1655-1659. |
ZHOU L C, JIANG N, YAN S T, et al. Research and optimization progress of low-temperature electrolyte for lithium-ion power battery[J]. Chinese Journal of Power Sources, 2021, 45(12): 1655-1659. | |
13 | 刘建文, 常赟. 钛酸锂材料蓄电池低温性能[J]. 电源技术, 2013, 37(9): 1524-1526, 1529. |
LIU J W, CHANG Y. Research of low-temperature performance of Li4Ti5O12 material battery[J]. Chinese Journal of Power Sources, 2013, 37(9): 1524-1526, 1529. | |
14 | LÜ X J, YANG W G, QUAN Z W, et al. Enhanced electron transport in Nb-doped TiO2 nanoparticles via pressure-induced phase transitions[J]. Journal of the American Chemical Society, 2014, 136(1): 419-426. |
15 | 张丽娟, 李法强, 诸葛芹, 等. 锂离子二次电池低温电解液的研究进展[J]. 盐湖研究, 2009, 17(2): 57-62. |
ZHANG L J, LI F Q, ZHUGE Q, et al. Research progress of low temperature electrolytes for Li-ion batteries[J]. Journal of Salt Lake Research, 2009, 17(2): 57-62. | |
16 | 刘旭, 杨续来. 锂离子电池电解质锂盐的研究进展[J]. 电源技术, 2016, 40(1): 218-220. |
LIU X, YANG X L. Research status of lithium salt for lithium ion battery[J]. Chinese Journal of Power Sources, 2016, 40(1): 218-220. | |
17 | ZHANG S S, XU K, JOW T R. Low temperature performance of graphite electrode in Li-ion cells[J]. Electrochimica Acta, 2002, 48(3): 241-246. |
18 | HUANG C K, SAKAMOTO J S, WOLFENSTINE J, et al. The limits of low-temperature performance of Li-ion cells[J]. Journal of the Electrochemical Society, 2000, 147(8): 2893. |
19 | AUGUSTYN V, COME J, LOWE M A, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nature Materials, 2013, 12(6): 518-522. |
20 | WANG W L, OH B Y, PARK J Y, et al. Solid-state synthesis of Ti2Nb10O29/reduced graphene oxide composites with enhanced lithium storage capability[J]. Journal of Power Sources, 2015, 300: 272-278. |
21 | CHEN L, LU C, YIN S, et al. Effect of Nb5+ doping on the structure and electrochemical performances of LiFePO4[J]. IOP Conference Series: Materials Science and Engineering, 2019, 493: 012045. |
22 | YUE R Y, XIA F, QI R J, et al. Trace Nb-doped Na0.7Ni0.3Co0.1Mn0.6O2 with suppressed voltage decay and enhanced low temperature performance[J]. Chinese Chemical Letters, 2021, 32(2): 849-853. |
23 | DONG X L, YANG Y, LI P L, et al. A high-rate and long-life rechargeable battery operated at -75 ℃[J]. Batteries & Supercaps, 2020, 3(10): 1016-1020. |
24 | MA X H, CAO X, YE Y Y, et al. Study on low-temperature performances of Nb16W5O55 anode for lithium-ion batteries[J]. Solid State Ionics, 2020, 353: 115376. |
25 | GRIFFITH K J, HARADA Y, EGUSA S, et al. Titanium niobium oxide: From discovery to application in fast-charging lithium-ion batteries[J]. Chemistry of Materials, 2021, 33(1): 4-18. |
26 | MENG Q H, CHEN F, HAO Q F, et al. Nb-doped Li4Ti5O12-TiO2 hierarchical microspheres as anode materials for high-performance Li-ion batteries at low temperature[J]. Journal of Alloys and Compounds, 2021, 885: 160842. |
27 | YIN Y, FANG Z, CHEN J W, et al. Hybrid Li-ion capacitor operated within an all-climate temperature range from -60 to +55 ℃[J]. ACS Applied Materials & Interfaces, 2021, 13(38): 45630-45638. |
28 | LIANG H C, LIU L L, WANG N, et al. Unusual mesoporous titanium niobium oxides realizing sodium-ion batteries operated at -40 ℃[J]. Advanced Materials, 2022, 34(28): doi: 10.1002/adma.202202873. |
29 | 符庆丰. 锂离子电池高性能Nb基氧化物负极材料的研究[D]. 海口: 海南大学, 2019. |
FU Q F. Study on the niobium-based oxides as high-performance anode materials for lithium-ion batteries[D]. Haikou: Hainan University, 2019. | |
30 | CAVA R J, MURPHY D W, ZAHURAK S M. Lithium insertion in wadsley-roth phases based on niobium oxide[J]. Journal of the Electrochemical Society, 1983, 130(12): 2345-2351. |
31 | 孙德旺, 蒋必志, 袁涛, 等. 钛铌氧化物用于锂离子电池负极的研究进展[J]. 储能科学与技术, 2021, 10(6): 2127-2143. |
SUN D W, JIANG B Z, YUAN T, et al. Research progress of titanium niobium oxide used as anode of lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2127-2143. | |
32 | 刘旭恒, 黄少波, 赵中伟, 等. Nb5+掺杂LiFePO4/C的反应挤出合成[J]. 中国有色金属学报, 2012, 22(11): 3236-3240. |
LIU X H, HUANG S B, ZHAO Z W, et al. Synthesis of LiFePO4/C doped with Nb5+ by reaction extrusion[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(11): 3236-3240. | |
33 | WU W C, HUANG J F, LI J Y, et al. Inducing[001]-orientation in Nb2O5 capsule-nanostructure for promoted Li+ diffusion process[J]. Electrochimica Acta, 2019, 298: 449-458. |
34 | HAN J T, HUANG Y H, GOODENOUGH J B. New anode framework for rechargeable lithium batteries[J]. Chemistry of Materials, 2011, 23(8): 2027-2029. |
35 | 万明远. 煅烧温度对五氧化二铌物理性能的影响[J]. 稀有金属与硬质合金, 2002, 30(1): 19-23. |
WAN M Y. Influence of calcination temperature on Nb2O5 physical property[J]. Rare Metals and Cemented Carbides, 2002, 30(1): 19-23. | |
36 | 李长乐. T相五氧化二铌锂离子电池负极材料的制备及其电化学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
LI C (L/Y). Preparation and property of T-Nb2O5 negative electrodes for lithium-ion batteries[D]. Harbin: Harbin Institute of Technology, 2016. | |
37 | 仵婉晨. Nb2O5基纳米电极材料的制备及电化学性能研究[D]. 西安: 陕西科技大学, 2019. |
WU W C. Preparation and electrochemical performance of Nb2O5 based nanoelectrode materials[D]. Xi'an: Shaanxi University of Science & Technology, 2019. | |
38 | LIU A, ZHANG H T, XING C X, et al. Intensified energy storage in high-voltage nanohybrid supercapacitors via the efficient coupling between TiNb2O7/holey-rGO nanoarchitectures and ionic liquid-based electrolytes[J]. ACS Applied Materials & Interfaces, 2021, 13(18): 21349-21361. |
39 | YANG C, LIN C F, LIN S W, et al. Cu0.02Ti0.94Nb2.04O7: An advanced anode material for lithium-ion batteries of electric vehicles[J]. Journal of Power Sources, 2016, 328: 336-344. |
40 | LIN C F, YU S, WU S Q, et al. Ru0.01Ti0.99Nb2O7 as an intercalation-type anode material with a large capacity and high rate performance for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(16): 8627-8635. |
41 | SONG H, KIM Y T. A Mo-doped TiNb2O7 anode for lithium-ion batteries with high rate capability due to charge redistribution[J]. Chemical Communications, 2015, 51(48): 9849-9852. |
42 | LIU M, DONG H C, ZHANG S, et al. Three-dimensional porous TiNb2O7/CNT-KB composite microspheres as lithium-ion battery anode material[J]. ChemElectroChem, 2019, 6(15): 3959-3965. |
43 | YANG Y, YUE Y, WANG L, et al. Facile synthesis of mesoporous TiNb2O7/C microspheres as long-life and high-power anodes for lithium-ion batteries[J]. International Journal of Hydrogen Energy, 2020, 45(22): 12583-12592. |
44 | LUO J, PENG J, ZENG P, et al. TiNb2O7 nano-particle decorated carbon cloth as flexible self-support anode material in lithium-ion batteries[J]. Electrochimica Acta, 2020, 332: 135469. |
45 | LIANG D W, LU Y, HU L, et al. Mesoporous TiNb2O7 nanosheets anode with excellent rate capability and cycling performance in lithium ion half/full batteries[J]. Journal of Power Sources, 2022, 544: 231897. |
46 | YIN L H, PHAM-CONG D, JEON I, et al. Electrochemical performance of vertically grown WS2 layers on TiNb2O7 nanostructures for lithium-ion battery anodes[J]. Chemical Engineering Journal, 2020, 382: 122800. |
47 | ZHANG Y, KANG C, ZHAO W, et al. Crystallographic engineering to reduce diffusion barrier for enhanced intercalation pseudocapacitance of TiNb2O7 in fast-charging batteries[J]. Energy Storage Materials, 2022, 47: 178-186. |
48 | YAO M, LIU A, XING C X, et al. Asymmetric supercapacitor comprising a core-shell TiNb2O7@MoS2/C anode and a high voltage ionogel electrolyte[J]. Chemical Engineering Journal, 2020, 394: 124883. |
49 | LUO D, MA C Y, HOU J F, et al. Integrating nanoreactor with O-Nb-C heterointerface design and defects engineering toward high-efficiency and longevous sodium ion battery (adv. energy mater. 18/2022)[J]. Advanced Energy Materials, 2022, 12(18): 2103716. |
50 | LI Q Y, JIAO S H, LUO L L, et al. Wide-temperature electrolytes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 18826-18835. |
51 | XU J, WANG X, YUAN N Y, et al. Extending the low temperature operational limit of Li-ion battery to -80 ℃[J]. Energy Storage Materials, 2019, 23: 383-389. |
52 | HU B Q, ZHOU X S, XU J A, et al. Excellent rate and low temperature performance of lithium-ion batteries based on binder-free Li4Ti5O12 electrode[J]. ChemElectroChem, 2020, 7(3): 716-722. |
53 | GAI J L, YANG J R, YANG W, et al. Lithium Ion Batteries Operated at -100 ℃[J]. Chinese Physics Letters, 2023, 40(8): 1-4. |
54 | AURBACH D, GAMOLSKY K, MARKOVSKY B, et al. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries[J]. Electrochimica Acta, 2002, 47(9): 1423-1439. |
55 | XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618. |
56 | FATHOLLAHI ZONOUZ A, MOSALLANEJAD B. Use of ethyl acetate for improving low-temperature performance of lithium-ion battery[J]. Monatshefte Für Chemie-Chemical Monthly, 2019, 150(6): 1041-1047. |
57 | 任永欢, 吴伯荣, 杨春巍, 等. 锂离子电池电解液新型锂盐的研究进展[J]. 电源技术, 2011, 35(9): 1171-1174. |
REN Y H, WU B R, YANG C W, et al. Review of new lithium slats of electrolyte for Li-ion batteries[J]. Chinese Journal of Power Sources, 2011, 35(9): 1171-1174. | |
58 | 宋印涛, 李连仲, 丁静, 等. 锂离子电池电解质盐的研究进展[J]. 浙江化工, 2010, 41(8): 24-26. |
SONG Y T, LI L Z, DING J, et al. Research process of lithium salts in lithium-ion battery electrolyte[J]. Zhejiang Chemical Industry, 2010, 41(8): 24-26. | |
59 | XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4418. |
60 | SUN Y L, LIU B, LIU L Y, et al. Ions transport in electrochemical energy storage devices at low temperatures[J]. Advanced Functional Materials, 2022, 32(15): 2109568. |
61 | ZHOU H M, XIAO K W, LI J. Lithium difluoro(oxalate)borate and LiBF4 blend salts electrolyte for LiNi0.5Mn1.5O4 cathode material[J]. Journal of Power Sources, 2016, 302: 274-282. |
[1] | 李晨威, 徐世国, 余海峰, 于松民, 江浩. 镁掺杂改性LiMn0.5Fe0.5PO4/C正极材料与性能研究[J]. 储能科学与技术, 2024, 13(6): 1767-1774. |
[2] | 孙琦, 彭豪, 孟庆国, 孔德凯, 冯睿. 极限工况下储能电池包热适应性[J]. 储能科学与技术, 2024, 13(6): 2039-2043. |
[3] | 张玉超, 张凤姣, 娄伟, 昝飞翔, 王琳玲, 盛安旭, 吴晓辉, 陈静. 废旧锂离子电池有价金属资源化利用的转化过程和潜在环境影响[J]. 储能科学与技术, 2024, 13(6): 1861-1870. |
[4] | 汤旭旭, 许铤, 储德韧. 镍钴锰三元锂离子电池不同电压下浮充失效机理及热安全研究[J]. 储能科学与技术, 2024, 13(6): 2044-2053. |
[5] | 钟国彬, 姚鑫, 刘永超, 侯倩, 项宏发. 锂离子电池高安全复合隔膜的挑战和未来展望[J]. 储能科学与技术, 2024, 13(6): 1794-1806. |
[6] | 唐梓巍, 师玉璞, 张雨禅, 周奕博, 杜慧玲. 基于Informer神经网络的锂离子电池容量退化轨迹预测[J]. 储能科学与技术, 2024, 13(5): 1658-1666. |
[7] | 缪胤宝, 张文华, 刘伟昊, 王帅, 陈哲, 彭望, 曾杰. 富锂正极材料Li1.2Ni0.13Co0.13Mn0.54O2 的制备及性能[J]. 储能科学与技术, 2024, 13(5): 1427-1434. |
[8] | 廉高棨, 叶敏, 王桥, 李岩, 麻玉川, 孙乙丁, 杜鹏辉. 基于改进模型与优化自适应CKF的锂离子电池快速变温工况下的SOC估计[J]. 储能科学与技术, 2024, 13(5): 1667-1676. |
[9] | 卢俊杰, 彭丹, 倪文静, 杨媛, 汪靖伦. 锂/氟化碳电池电解液的研究进展[J]. 储能科学与技术, 2024, 13(5): 1487-1495. |
[10] | 吕兆财, 王玉西, 汪智涛, 孙晓辉, 李景康. 热辊压对锂离子电池正极极片性能的影响[J]. 储能科学与技术, 2024, 13(5): 1443-1450. |
[11] | 李润源, 郭傅傲, 赵钢超. 集装箱式锂离子电池储能系统消防安全早期预警方法[J]. 储能科学与技术, 2024, 13(5): 1595-1602. |
[12] | 何林, 刘江岩, 刘彬, 李夔宁, 代帅. 数据分布多样性对锂电池SOC预测的泛化影响[J]. 储能科学与技术, 2024, 13(5): 1677-1687. |
[13] | 韩亚露, 陈奕戈, 邸会芳, 林杰欢, 王振兵, 张扬, 苏方远, 陈成猛. 锂离子电池不同服役工况下失效研究进展[J]. 储能科学与技术, 2024, 13(4): 1338-1349. |
[14] | 袁悦博, 王贺武, 孔祥栋, 蒲明伟, 孙玉坤, 韩雪冰, 欧阳明高. 金属异物缺陷演化特性及其对产线 K 值的影响机制[J]. 储能科学与技术, 2024, 13(4): 1197-1204. |
[15] | 李革, 孔祥栋, 孙跃东, 陈飞, 袁悦博, 韩雪冰, 郑岳久. 基于产线大数据的锂离子电池一致性动态特性分选方法[J]. 储能科学与技术, 2024, 13(4): 1188-1196. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||