1 |
曹一家, 王光增, 曹丽华, 等. 基于潮流熵的复杂电网自组织临界态判断模型[J]. 电力系统自动化, 2011, 35(7): 1-6.
|
|
CAO Y J, WANG G Z, CAO L H, et al. An identification model for self-organized criticality of power grids based on power flow entropy[J]. Automation of Electric Power Systems, 2011, 35(7): 1-6.
|
2 |
蒋群. 电力系统可靠性裕度评估[D]. 北京: 华北电力大学, 2011.
|
|
JIANG Q. Evaluation of power system reliability magin[D]. Beijing: North China Electric Power University, 2011.
|
3 |
苟竞, 刘俊勇, 刘友波, 等. 基于能量熵测度的电力系统连锁故障风险辨识[J]. 电网技术, 2013, 37(10): 2754-2761.
|
|
GOU J, LIU J Y, LIU Y B, et al. Energy entropy measure based risk identification of power system cascading failures[J]. Power System Technology, 2013, 37(10): 2754-2761.
|
4 |
李志民, 李卫星, 王永建. 基于熵理论的最优潮流代理约束算法[J]. 电力系统自动化, 2001, 25(11): 28-31.
|
|
LI Z M, LI W X, WANG Y J. Surrogate constraint algorithm for optimal power flow based on the entropy theory[J]. Automation of Electric Power Systems, 2001, 25(11): 28-31.
|
5 |
钟静, 吕飞鹏, 孔德洪, 等. 基于加权潮流转移熵的电网脆弱线路辨识[J]. 电测与仪表, 2016, 53(10): 22-26.
|
|
ZHONG J, LV F P, KONG D H, et al. Vulnerable lines identification of power grid based on weighted transfer entropy of power flow[J]. Electrical Measurement & Instrumentation, 2016, 53(10): 22-26.
|
6 |
朱成骐, 孙宏斌, 张伯明. 基于最大信息熵原理的短期负荷预测综合模型[J]. 中国电机工程学报, 2005, 25(19): 1-6.
|
|
ZHU C Q, SUN H B, ZHANG B M. A combined model for short term load forecasting based on maximum entropy principle[J]. Proceedings of the CSEE, 2005, 25(19): 1-6.
|
7 |
慈松, 刘前卫, 康重庆, 等. 从"信息-能量" 基本关系看信息能源深度融合[J]. 中国电机工程学报, 2021, 41(7): 2289-2297.
|
|
CI S, LIU Q W, KANG C Q, et al. Fundamental exploration into ICT-energy fusion[J]. Proceedings of the CSEE, 2021, 41(7): 2289-2297.
|
8 |
管霖, 卓映君, 周保荣, 等. 复杂波动时间序列的多尺度分解算法及其在可再生能源发电建模应用中的性能评估[J]. 南方电网技术, 2020, 14(6): 11-16, 32.
|
|
GUAN L, ZHUO Y J, ZHOU B R, et al. Multi-scale decomposition algorithms for complicated fluctuant time series and their performance evaluation in renewable energy generation modeling[J]. Southern Power System Technology, 2020, 14(6): 11-16, 32.
|
9 |
李浩, 钟声远, 王永真, 等. 基于能量与信息耦合的分布式能源系统配置优化方法[J]. 中国电机工程学报, 2020, 40(17): 5467-5476.
|
|
LI H, ZHONG S Y, WANG Y Z, et al. Optimization method on the distributed energy system based on energy and information coupled[J]. Proceedings of the CSEE, 2020, 40(17): 5467-5476.
|
10 |
张儒峰, 姜涛, 李国庆, 等. 基于最大熵原理的电-气综合能源系统概率能量流分析[J]. 中国电机工程学报, 2019, 39(15): 4430-4441.
|
|
ZHANG R F, JIANG T, LI G Q, et al. Maximum entropy based probabilistic energy flow calculation for integrated electricity and natural gas systems[J]. Proceedings of the CSEE, 2019, 39(15): 4430-4441.
|
11 |
陈中, 胡吕龙, 丁楠. 基于改进熵的风光储互补并网系统优化运行[J]. 电力系统保护与控制, 2013, 41(21): 86-91.
|
|
CHEN Z, HU L, DING N. Optimized operation of wind-solar-battery hybrid power system based on improved entropy[J]. Power System Protection and Control, 2013, 41(21): 86-91.
|
12 |
ZHOU G Y, CHAN C C, ZHANG D, et al. Smart energy evolution road-map based on the correlation between energy and information[J]. Energy Procedia, 2019, 158: 3082-3087.
|
13 |
GUO H, XU Y J, CHEN H S, et al. Corresponding-point methodology for physical energy storage system analysis and application to compressed air energy storage system[J]. Energy, 2018, 143: 772-784.
|
14 |
李鹤龄. 信息熵、玻尔兹曼熵以及克劳修斯熵之间的关系——兼论玻尔兹曼熵和克劳修斯熵是否等价[J]. 大学物理, 2004, 23(12): 37-40.
|
|
LI H L. The relation between information entropy, Boltzmann entropy and Clausius entropy[J]. College Physics, 2004, 23(12): 37-40.
|