储能科学与技术 ›› 2024, Vol. 13 ›› Issue (3): 725-741.doi: 10.19799/j.cnki.2095-4239.2024.0142
孙蔷馥(), 申晓宇, 岑官骏, 乔荣涵, 朱璟, 郝峻丰, 张新新, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰()
收稿日期:
2024-02-22
出版日期:
2024-03-28
发布日期:
2024-03-28
通讯作者:
黄学杰
E-mail:sunqiangfu22@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
作者简介:
孙蔷馥(2000—),女,硕士研究生,研究方向为锂离子电池,E-mail:sunqiangfu22@mails.ucas.ac.cn;
Qiangfu SUN(), Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2024-02-22
Online:
2024-03-28
Published:
2024-03-28
Contact:
Xuejie HUANG
E-mail:sunqiangfu22@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
摘要:
本文是一篇近两个月的锂电池文献评述,以“lithium”和“battery*”为关键词检索了Web of Science从2023年12月1日至2024年1月31日上线的锂电池研究论文,共有6213篇,选择其中100篇加以评论。正极材料的研究集中于高镍三元、富锂正极材料的掺杂改性和表面包覆,以及其在长循环过程中的结构演变等。负极材料的研究重点包括硅基负极的界面调控和材料制备优化以缓冲体积变化、金属锂负极的界面构筑与调控。固态电解质的研究主要包括氯化物固态电解质、硫化物固态电解质和聚合物固态电解质的结构设计以及相关性能研究,电解液研究则主要包括不同电解质盐和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。针对固态电池,正极材料的体相改性和表面包覆、复合正极制备与界面修饰、锂金属负极的界面构筑和三维结构设计有多篇文献报道。锂硫电池的研究重点是硫正极的结构设计、功能涂层和电解液的改进,固态锂硫电池也引起了广泛关注。电池工艺技术方面的研究包括干法等电极制备技术、黏结剂的研究。表征分析涵盖了正极材料的结构相变、锂沉积负极的界面演变等。理论模拟工作侧重于界面离子传输的研究,以及通过计算模拟来优化电极结构。
中图分类号:
孙蔷馥, 申晓宇, 岑官骏, 乔荣涵, 朱璟, 郝峻丰, 张新新, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2023.12.1—2024.1.31)[J]. 储能科学与技术, 2024, 13(3): 725-741.
Qiangfu SUN, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2023 to Jan. 31, 2024)[J]. Energy Storage Science and Technology, 2024, 13(3): 725-741.
1 | GUO F, HUANG G S, ZHANG W C, et al. Lithium battery state-of-health estimation based on sample data generation and temporal convolutional neural network[J]. Energies, 2023, 16(24): 8010. |
2 | FAN F X, ZHENG R X, ZENG T, et al. Cation-ordered Ni-rich positive electrode material with superior chemical and structural stability enabled by atomic substitution for lithium-ion batteries[J]. Chemical Engineering Journal, 2023, 477: 147181. |
3 | KAM D, CHOI M, PARK D, et al. Unveiling the potential of surface-beneath region doping by induced-diffusion in nickel-rich single crystal cathode for high-performance lithium-ion batteries[J]. Chemical Engineering Journal, 2023, 472: 144885. |
4 | HUANG H, ZHU H J, GAO J, et al. Grain-growth inhibitor with three-section-sintering for highly dispersed single-crystal NCM90 cubes[J]. Angewandte Chemie (International Ed in English), 2024, 63(2): e202314457. |
5 | TAN Z L, CHEN X X, LI Y J, et al. Enabling superior cycling stability of LiNi0.9Co0.05Mn0.05O2 with controllable internal strain[J]. Advanced Functional Materials, 2023, 33(26): 2215123. |
6 | WU F, SHI Q, CHEN L, et al. New insights into dry-coating-processed surface engineering enabling structurally and thermally stable high-performance Ni-rich cathode materials for lithium ion batteries[J]. Chemical Engineering Journal, 2023, 470: 144045. |
7 | TAN X H, CHEN Z F, LIU T C, et al. Imitating architectural mortise-tenon structure for stable Ni-rich layered cathodes[J]. Advanced Materials, 2023, 35(32): e2301096. |
8 | SHI H C, ZHANG H W, WEN Z P, et al. Storage performance and structure degradation mechanism of single-crystal Ni-rich material[J]. ACS Applied Energy Materials, 2024, 7(1): 353-362. |
9 | ZHAO W G, WANG K, FAN X M, et al. Quantifying degradation parameters of single-crystalline Ni-rich cathodes in lithium-ion batteries[J]. Angewandte Chemie (International Ed in English), 2023, 62(32): e202305281. |
10 | LI H, LI Z, LIU J L, et al. Improving the electrochemical performance of co-free Li-rich layered oxides via a dual modification of Nb5+ doping and oxygen vacancy regulation[J]. ACS Applied Energy Materials, 2023, 6(21): 10773-10783. |
11 | HAO Z K, SUN H X, NI Y X, et al. Suppressing bulk strain and surface O2 release in Li-rich cathodes by just tuning the Li content[J]. Advanced Materials, 2024, 36(1): e2307617. |
12 | JIANG Y S, YU F D, KE W, et al. Accessible Li percolation and extended oxygen oxidation boundary in rocksalt-like cathode enabled by initial Li-deficient nanostructure[J]. Advanced Functional Materials, 2023, 33(31): doi: 10.1002/ADFM.202213615. |
13 | OU Y J, YANG L T, GAO J Z, et al. Absolutely-zero-expansion behavior enables ultra-long life for stationary energy storage[J]. Advanced Functional Materials, 2023, 33(47): 2305329. |
14 | WANG F, MAO J, ZHAO Y. Crystal engineering of silica anode achieving intrinsic zero-strain[J]. Advanced Materials, 2023, 35(51): e2307908. |
15 | WANG Y X, YANG X F, YUAN Y, et al. N-rich solid electrolyte interface constructed in situ via a binder strategy for highly stable silicon anode[J]. Advanced Functional Materials, 2023, 33(34): 2301716. |
16 | BAI S, BAO W, QIAN K, et al. Elucidating the role of prelithiation in Si-based anodes for interface stabilization[J]. Advanced Energy Materials, 2023, 13(28): 2301041. |
17 | HUANG S Z, WU Z B, JOHANNESSEN B, et al. Interfacial friction enabling≤20 μm thin free-standing lithium strips for lithium metal batteries[J]. Nature Communications, 2023, 14: 5678. |
18 | YUAN X T, LIU B, MECKLENBURG M, et al. Ultrafast deposition of faceted lithium polyhedra by outpacing SEI formation[J]. Nature, 2023, 620: 86-91. |
19 | LONG K C, HUANG S Z, WANG H, et al. Green mechanochemical Li foil surface reconstruction toward long-life Li-metal pouch cells[J]. Energy & Environmental Science, 2024, 17(1): 260-273. |
20 | CHEN C, ZHANG J M, HU B R, et al. Dynamic gel as artificial interphase layer for ultrahigh-rate and large-capacity lithium metal anode[J]. Nature Communications, 2023, 14: 4018. |
21 | CHEN Y Y, CHEN W, TONG M Y, et al. Solution combustion synthesis of submicron-sized titanium niobium oxide anodes for high-rate and ultrastable lithium-ion batteries[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2024, 40(1): 975-983. |
22 | LI X N, KIM J T, LUO J, et al. Structural regulation of halide superionic conductors for all-solid-state lithium batteries[J]. Nature Communications, 2024, 15: 53. |
23 | HWANG S H, SEO S D, KIM D W. A novel time-saving synthesis approach for Li-argyrodite superionic conductor[J]. Advanced Science, 2023, 10(22): e2301707. |
24 | 张志伟, 王海燕, 张琦, 等. 废旧锂电池正极材料的回收再利用研究[J]. 功能材料, 2023, 54(9): 9203-9210. |
ZHANG Z W, WANG H Y, ZHANG Q, et al. Investigation the recycling and reusing of the waste lithium-ion battery cathode materials[J]. Journal of Functional Materials, 2023, 54(9): 9203-9210. | |
25 | YAMAGUCHI H, KOBAYASHI K, HIROI S, et al. Structural analysis and ionic conduction mechanism of sulfide-based solid electrolytes doped with Br[J]. Scientific Reports, 2023, 13: 16063. |
26 | SONG Z H, WANG L, JIANG W Y, et al. "like compatible like" strategy designing strong cathode-electrolyte interface quasi-solid-state lithium-sulfur batteries[J]. Advanced Energy Materials, 2024, 14(4): 2302688. |
27 | ZHOU S, WANG X, XU Z L, et al. Rapid self-healing, highly conductive and near-single-ion conducting gel polymer electrolytes based on dynamic boronic ester bonds for high-safety lithium metal batteries[J]. Journal of Energy Storage, 2024, 75: doi: 10.1016/j.est.2023.109712. |
28 | ZHANG W R, KOVERGA V, LIU S F, et al. Single-phase local-high-concentration solid polymer electrolytes for lithium-metal batteries[J]. Nature Energy, 2024. |
29 | FERRER-NICOMEDES S, MORMENEO-SEGARRA A, VICENTE-AGUT N, et al. Introducing an ionic conductive matrix to the cold-sintered Li1.3Al0.3Ti1.7(PO4)3-based composite solid electrolyte to enhance the electrical properties[J]. Journal of Power Sources, 2023, 581: 233494. |
30 | RAHMAN M M, TAN S, YANG Y, et al. An inorganic-rich but LiF-free interphase for fast charging and long cycle life lithium metal batteries[J]. Nature Communications, 2023, 14: 8414. |
31 | STEHLE P, RUTZ D, BAZZOUN A M, et al. The optimal amount of lithium difluorophosphate as an additive for Si-dominant anodes in an application-oriented setup[J]. ChemSusChem, 2024, 17(3): e202301153. |
32 | WANG X L, ZENG Z Q, ZHANG H, et al. 1, 3, 5-Trifluorobenzene, an electrolyte additive with high thermal stability and superior film-forming properties for lithium-ion batteries[J]. Chemical Communications, 2023, 59(86): 12919-12922. |
33 | ZHUANG X C, ZHANG S H, CUI Z L, et al. Interphase regulation by multifunctional additive empowering high energy lithium-ion batteries with enhanced cycle life and thermal safety[J]. Angewandte Chemie (International Ed in English), 2024, 63(5): e202315710. |
34 | REN Z Q, QIU H Y, FAN C, et al. Delicately designed cyano-siloxane as multifunctional additive enabling high voltage LiNi0.9Co0.05Mn0.05O2/graphite full cell with long cycle life at 50 ℃[J]. Advanced Functional Materials, 2023, 33(36): 2302411. |
35 | CHEN Q R, CHEN M, XIE Z, et al. Constructing a highly robust interface film for enhancing rate performance of graphite anode via a novel electrolyte additive[J]. The Journal of Physical Chemistry Letters, 2023, 14(49): 10863-10869. |
36 | YU Y K, KOH H, ZHANG Z S, et al. Kinetic pathways of fast lithium transport in solid electrolyte interphases with discrete inorganic components[J]. Energy & Environmental Science, 2023, 16(12): 5904-5915. |
37 | TIAN Y F, TAN S J, YANG C P, et al. Tailoring chemical composition of solid electrolyte interphase by selective dissolution for long-life micron-sized silicon anode[J]. Nature Communications, 2023, 14: 7247. |
38 | WU D X, ZHU C L, WANG H P, et al. Mechanically and thermally stable cathode electrolyte interphase enables high-temperature, high-voltage Li||LiCoO2 batteries[J]. Angewandte Chemie (International Ed in English), 2024, 63(7): e202315608. |
39 | JAMAL A, SALIAN G D, MATHEW A, et al. Tris(trimethylsilyl) phosphite and lithium difluoro(oxalato)borate as electrolyte additives for LiNi0.5Mn1.5O4-graphite lithium-ion batteries[J]. ChemElectroChem, 2023, 10(16): doi: 10.1002/celc.202300139. |
40 | WANG Y K, LI Z M, XIE W W, et al. Asymmetric solvents regulated crystallization-limited electrolytes for all-climate lithium metal batteries[J]. Angewandte Chemie (International Ed in English), 2024, 63(6): e202310905. |
41 | CHEN Y Q, HE Q, ZHAO Y, et al. Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery[J]. Nature Communications, 2023, 14: 8326. |
42 | LUO L B, CHEN K A, CHEN H, et al. Enabling ultralow-temperature (-70 ℃) lithium-ion batteries: Advanced electrolytes utilizing weak-solvation and low-viscosity nitrile cosolvent[J]. Advanced Materials, 2024, 36(5): e2308881. |
43 | LEE J N, JEON A R, LEE H J, et al. Molecularly engineered linear organic carbonates as practically viable nonflammable electrolytes for safe Li-ion batteries[J]. Energy & Environmental Science, 2023, 16(7): 2924-2933. |
44 | QIN M S, ZENG Z Q, WU Q, et al. 1, 3, 5-Trifluorobenzene endorsed EC-free electrolyte for high-voltage and wide-temperature lithium-ion batteries[J]. Journal of Energy Chemistry, 2023, 85: 49-57. |
45 | ZHANG X Z, XU P, DUAN J N, et al. A dicarbonate solvent electrolyte for high performance 5 V-Class lithium-based batteries[J]. Nature Communications, 2024, 15: 536. |
46 | WANG K J, LIANG Z T, WENG S T, et al. Surface engineering strategy enables 4.5 V sulfide-based all-solid-state batteries with high cathode loading and long cycle life[J]. ACS Energy Letters, 2023, 8(8): 3450-3459. |
47 | SU Y, LIU X S, YAN H, et al. Assembly of an elastic & sticky interfacial layer for sulfide-based all-solid-state batteries[J]. Nano Energy, 2023, 113: 108572. |
48 | ZHANG M H, ZHANG S J, LI M, et al. Self-sacrificing reductive interphase for robust and high-performance sulfide-based all-solid-state lithium batteries[J]. Advanced Energy Materials, 2024, 14(5): 2303647. |
49 | TIAN R Z, WANG Z Y, LIAO J G, et al. High-voltage stability of small-size single crystal Ni-rich layered cathode for sulfide-based all-solid-state lithium battery at 4.5 V[J]. Advanced Energy Materials, 2023, 13(26): 2300850. |
50 | LIU P F, MI X, ZHAO H H, et al. Effects of incineration and pyrolysis on removal of organics and liberation of cathode active materials derived from spent ternary lithium-ion batteries[J]. Waste Management, 2023, 169: 342-350. |
51 | YAO X M, CHEN S M, WANG C H, et al. Interface welding via thermal pulse sintering to enable 4.6V solid-state batteries[J]. Advanced Energy Materials, 2023: 2303422. |
52 | ASAKURA T, INAOKA T, HOTEHAMA C, et al. Stack pressure dependence of Li stripping/plating performance in all-solid-state Li metal cells containing sulfide glass electrolytes[J]. ACS Applied Materials & Interfaces, 2023, 15(26): 31403-31408. |
53 | ZHANG S X, CHEN J C, ZHU C Y, et al. Robust all-solid-state lithium metal batteries enabled by a composite lithium anode with improved bulk Li diffusion kinetics properties[J]. ACS Nano, 2023, 17(23): 24290-24298. |
54 | YAN W L, MU Z L, WANG Z X, et al. Hard-carbon-stabilized Li-Si anodes for high-performance all-solid-state Li-ion batteries[J]. Nature Energy, 2023, 8: 800-813. |
55 | YE L H, LU Y, WANG Y C, et al. Fast cycling of lithium metal in solid-state batteries by constriction-susceptible anode materials[J]. Nature Materials, 2024, 23: 244-251. |
56 | JUN S, LEE G, SONG Y B, et al. Interlayer engineering and prelithiation: Empowering Si anodes for low-pressure-operating all-solid-state batteries[J]. Small, 2024: e2309437. |
57 | LIU T, ZHANG L, LI Y Y, et al. PVDF-HFP via localized iodization as interface layer for all-solid-state lithium batteries with Li6PS5Cl films[J]. Small, 2023: e2307260. |
58 | WANG Z Y, XIA J L, JI X, et al. Lithium anode interlayer design for all-solid-state lithium-metal batteries[J]. Nature Energy, 2024. |
59 | GRANDJEAN M, PICHARDO M, BIECHER Y, et al. Matching silicon-based anodes with sulfide-based solid-state electrolytes for Li-ion batteries[J]. Journal of Power Sources, 2023, 580: 233386. |
60 | ZHANG J, LIU T, YUAN Q, et al. Low volume-expansion, insertion-type layered silicate hierarchical structure for superior storage of Li, Na, K[J]. Advanced Functional Materials, 2023, 33(33): 2301914. |
61 | ZHENG C J, LU Y, CHANG Q, et al. High-performance garnet-type solid-state lithium metal batteries enabled by scalable elastic and Li+-conducting interlayer[J]. Advanced Functional Materials, 2023, 33(33): 2302729. |
62 | LI S, YANG S J, LIU G X, et al. A dynamically stable mixed conducting interphase for all-solid-state lithium metal batteries[J]. Advanced Materials, 2024, 36(3): e2307768. |
63 | TAKLU B W, NIKODIMOS Y, BEZABH H K, et al. Air-stable iodized-oxychloride argyrodite sulfide and anionic swap on the practical potential window for all-solid-state lithium-metal batteries[J]. Nano Energy, 2023, 112: 108471. |
64 | KIM M, KIM M J, OH Y S, et al. Design strategies of Li-Si alloy anode for mitigating chemo-mechanical degradation in sulfide-based all-solid-state batteries[J]. Advanced Science, 2023, 10(24): e2301381. |
65 | HU A J, CHEN W, LI F, et al. Nonflammable polyfluorides-anchored quasi-solid electrolytes for ultra-safe anode-free lithium pouch cells without thermal runaway[J]. Advanced Materials, 2023, 35(51): e2304762. |
66 | ALEXANDER G V, SHI C M, O'NEILL J, et al. Extreme lithium-metal cycling enabled by a mixed ion-and electron-conducting garnet three-dimensional architecture[J]. Nature Materials, 2023, 22: 1136-1143. |
67 | LI J H, WANG Z Y, SHI K X, et al. Nanoreactors encapsulating built-in electric field as a "bridge" for Li-S batteries: Directional migration and rapid conversion of polysulfides[J]. Advanced Energy Materials, 2024, 14(9): 2303546. |
68 | GAO X Y, TIAN J X, CHENG S J, et al. A low-strain cathode by sp-carbon induced conversion in multi-level structure of graphdiyne[J]. Angewandte Chemie (International Ed in English), 2023, 62(33): e202304491. |
69 | ZHONG H Y, SU Y, WU Y Q, et al. Long-life and high-loading all-solid-state Li-S batteries enabled by acetylene black with dispersed co-N4 as single atom catalyst[J]. Advanced Energy Materials, 2023, 13(25): 2300767. |
70 | KIM J T, RAO A, NIE H Y, et al. Manipulating Li2S2/Li2S mixed discharge products of all-solid-state lithium sulfur batteries for improved cycle life[J]. Nature Communications, 2023, 14: 6404. |
71 | YU P W, SUN S R, SUN C H, et al. Active regulation volume change of micrometer-size Li2S cathode with high materials utilization for all-solid-state Li/S batteries through an interfacial redox mediator[J]. Advanced Functional Materials, 2024, 34(8): 2306939. |
72 | FUJITA Y, SAKUDA A, HASEGAWA Y, et al. High capacity Li2S-Li2O-LiI positive electrodes with nanoscale ion-conduction pathways for all-solid-state Li/S batteries[J]. Small, 2023, 19(36): doi: 10.1002/SMLL.202302179. |
73 | FAN Q Q, SI Y B, ZHU F L, et al. Activation of bulk Li2S as cathode material for lithium-sulfur batteries through organochalcogenide-based redox mediation chemistry[J]. Angewandte Chemie, 2023, 135(32): e202306705. |
74 | LAI T X, BHARGAV A, MANTHIRAM A. Lithium tritelluride as an electrolyte additive for stabilizing lithium deposition and enhancing sulfur utilization in anode-free lithium-sulfur batteries[J]. Advanced Functional Materials, 2023, 33(43): 2304568. |
75 | ANH H H, DUKJOON K. High energy and sustainable solid-state lithium-sulfur battery enabled by the force-bearing cathode and multifunctional double-layer hybrid solid electrolyte[J]. Chemical Engineering Journal, 2023, 474: doi: 10.1016/J.CEJ.2023.145982. |
76 | SON D, PARK H, LIM W G, et al. Ultrathin mixed ionic-electronic conducting interlayer via the solution shearing technique for high-performance lithium-sulfur batteries[J]. ACS Nano, 2023, 17(24): 25507-25518. |
77 | LV Z W, LIU J, LI C, et al. High-areal-capacity all-solid-state Li-S battery enabled by dry process technology[J]. eTransportation, 2024, 19: 100298. |
78 | SADAN M K, LIAN G J, SMITH R M, et al. Co, Ni-free ultrathick free-standing dry electrodes for sustainable lithium-ion batteries[J]. Acs Applied Energy Materials, 2023, 6(24): 12166-12171. |
79 | PARK N R, LI Y, YAO W, et al. Understanding the role of lithium borate as the surface coating on high voltage single crystal LiNi0.5Mn1.5O4[J]. Advanced Functional Materials, 2023, doi: 10.1002/adfm.202312091. |
80 | KÜNNE S, HESPER J M, LEIN T, et al. Hybrid high-voltage LiNi0.5Mn1.5O4/graphite cathodes enabling rechargeable batteries with simultaneous anion- and cation storage[J]. Batteries & Supercaps, 2023, 6(9): 2300284. |
81 | MOHANTY D P, MANN J B, PAYATHUPARAMBIL V N, et al. Single-step deformation processing of ultrathin lithium foil and strip[J]. Advanced Materials Technologies, 2024, 9(4): doi: 10.1002/admt.202301315. |
82 | BINDUMADHAVAN K, SURENDRAN V, SURIYAKUMAR S, et al. Dual-functional trisiloxane as binder additive for high volume expansion Li-ion battery electrodes[J]. Journal of Energy Storage, 2024, 77: 109931. |
83 | FENG Y, ZHONG B D, ZHANG R C, et al. Taming active-ion crosstalk by targeted ion sifter toward high-voltage lithium metal batteries[J]. Advanced Energy Materials, 2023, 13(45): 2302295. |
84 | CHEN X P, YUAN L, YAN S X, et al. Self-activation of Ferro-chemistry based advanced oxidation process towards in situ recycling of spent LiFePO4 batteries[J]. Chemical Engineering Journal, 2023, 471: 144343. |
85 | LIU S Z, WEST P J, ZHONG H, et al. Origin of phase separation in Ni-rich layered oxide cathode materials during electrochemical cycling[J]. Chemistry of Materials, 2023, 35(21): 8857-8871. |
86 | RYNEARSON L, ANTOLINI C, JAYAWARDANA C, et al. Speciation of transition metal dissolution in electrolyte from common cathode materials[J]. Angewandte Chemie (International Ed in English), 2024, 63(5): e202317109. |
87 | PÁEZ FAJARDO G J, FIAMEGKOU E, GOTT J A, et al. Synergistic degradation mechanism in single crystal Ni-rich NMC// graphite cells[J]. ACS Energy Letters, 2023, 8(12): 5025-5031. |
88 | KOIRALA K P, JIANG L, PATIL S, et al. Direct mapping of fluorine in cation disordered rocksalt cathodes[J]. ACS Energy Letters, 2024, 9(1): 10-16. |
89 | SANDOVAL S E, LEWIS J A, VISHNUGOPI B S, et al. Structural and electrochemical evolution of alloy interfacial layers in anode-free solid-state batteries[J]. Joule, 2023, 7(9): 2054-2073. |
90 | CHENG D Y, TRAN K, RAO S, et al. Manufacturing scale-up of anodeless solid-state lithium thin-film batteries for high volumetric energy density applications[J]. ACS Energy Letters, 2023, 8(11): 4768-4774. |
91 | SIM R, SU L S, DOLOCAN A, et al. Delineating the impact of transition-metal crossover on solid-electrolyte interphase formation with ion mass spectrometry[J]. Advanced Materials, 2023: e2311573. |
92 | AKTEKIN B, RIEGGER L M, OTTO S K, et al. SEI growth on Lithium metal anodes in solid-state batteries quantified with coulometric titration time analysis[J]. Nature Communications, 2023, 14: 6946. |
93 | LU X K, LAGNONI M, BERTEI A, et al. Multiscale dynamics of charging and plating in graphite electrodes coupling operando microscopy and phase-field modelling[J]. Nature Communications, 2023, 14: 5127. |
94 | KÖBBING L, LATZ A, HORSTMANN B. Voltage hysteresis of silicon nanoparticles: Chemo-mechanical particle-SEI model[J]. Advanced Functional Materials, 2024, 34(7): 2308818. |
95 | HASEGAWA G, KUWATA N, OHNISHI T, et al. Visualization and evaluation of lithium diffusion at grain boundaries in Li0.29La0.57TiO3 solid electrolytes using secondary ion mass spectrometry[J]. Journal of Materials Chemistry A, 2024, 12(2): 731-738. |
96 | WANG C H, AYKOL M, MUELLER T. Nature of the amorphous-amorphous interfaces in solid-state batteries revealed using machine-learned interatomic potentials[J]. Chemistry of Materials, 2023, 35(16): 6346-6356. |
97 | REYNOLDS C, NIRI M F, HIDALGO M, et al. Impact of formulation and slurry properties on lithium‐ion electrode manufacturing[J]. Batteries & Supercaps, 2023: doi: 10.1002/batt.202300396. |
98 | GRABE S, DENT M, ZHANG T, et al. A physicochemical model-based digital twin of Li-S batteries to elucidate the effects of cathode microstructure and evaluate different microstructures[J]. Journal of Power Sources, 2023, 580: 233470. |
99 | CLAUSNITZER M, DANNER T, PRIFLING B, et al. Influence of electrode structuring techniques on the performance of all-solid-state batteries[J]. Batteries & Supercaps, 2024: 2300522. |
100 | FU K, LI X Y, SUN K, et al. Clarifying the limiting factor of material utilization in thick electrodes of lithium-ion batteries[J]. Journal of Power Sources, 2024, 591: 233880. |
[1] | 朱亚宁, 张振东, 盛雷, 陈龙, 朱泽华, 付林祥, 毕青. 21700锂离子电池在不同健康状态下的热失控实验研究[J]. 储能科学与技术, 2024, 13(3): 971-980. |
[2] | 武美玲, 牛磊, 李世友, 赵冬妮. 正极预锂化添加剂用于锂离子电池的研究进展[J]. 储能科学与技术, 2024, 13(3): 759-769. |
[3] | 郭琦琳, 陶亮宇, 马哲树, 顾永明, 王钰婷. 纯电动SUV汽车火灾数值模拟分析[J]. 储能科学与技术, 2024, 13(3): 1000-1008. |
[4] | 孙明明. 有机无机复合锂离子电池固态电解质专利分析[J]. 储能科学与技术, 2024, 13(3): 1096-1105. |
[5] | 何春汕, 王子阳, 姚斌. 不同放电功率下的储能用磷酸铁锂电池热失控特性实验研究[J]. 储能科学与技术, 2024, 13(3): 981-989. |
[6] | 袁照凯, 范秋华, 王冬青, 孙天民. 基于MIAEKF的多温度下锂电池SOC估计[J]. 储能科学与技术, 2024, 13(2): 680-690. |
[7] | 彭可, 张志成, 胡有章, 张旭辉, 周稼辉, 李彬. 基于有限元的热力耦合场匣钵运动分析与优化[J]. 储能科学与技术, 2024, 13(2): 634-642. |
[8] | 陶致格, 朱顺兵, 侯双平, 李可, 王赫. 锂电池储能电站火灾与消防安全防护技术综合研究[J]. 储能科学与技术, 2024, 13(2): 536-545. |
[9] | 宋梦琼, 彭宇, 廖自强. 基于电化学热耦合模型的电池热管理研究[J]. 储能科学与技术, 2024, 13(2): 578-585. |
[10] | 郭秀丽, 周小龙, 邹才能, 唐永炳. 水系双离子电池的研究进展与展望[J]. 储能科学与技术, 2024, 13(2): 462-479. |
[11] | 杜文, 王君雷, 徐运飞, 李世龙, 王昆. 火焰喷雾热解法生产锂离子电池高镍三元正极材料的技术经济分析[J]. 储能科学与技术, 2024, 13(1): 345-357. |
[12] | 陈珊珊, 郑翔, 王若, 原铭蔓, 彭威, 鲁博明, 张光照, 王朝阳, 王军, 邓永红. 锂离子电池硅基负极电解液添加剂研究进展:挑战与展望[J]. 储能科学与技术, 2024, 13(1): 279-292. |
[13] | 李顺, 黄建国, 何桂金. 木质素基碳/硫纳米球复合材料作为高性能锂硫电池正极材料[J]. 储能科学与技术, 2024, 13(1): 270-278. |
[14] | 李枫, 程晓斌, 罗锦达, 姚宏斌. 金属氯化物固态电解质及其全固态电池研究现状与展望[J]. 储能科学与技术, 2024, 13(1): 193-211. |
[15] | 王盼晴, 黄彦杰, 何一芃, 陈祁恒, 尹提, 陈伟豪, 谭磊, 宁天翔, 邹康宇, 李灵均. 高镍正极材料表面锂残渣的研究进展[J]. 储能科学与技术, 2024, 13(1): 92-112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||