储能科学与技术 ›› 2024, Vol. 13 ›› Issue (3): 725-741.doi: 10.19799/j.cnki.2095-4239.2024.0142

• 热点点评 • 上一篇    下一篇

锂电池百篇论文点评(2023.12.12024.1.31

孙蔷馥(), 申晓宇, 岑官骏, 乔荣涵, 朱璟, 郝峻丰, 张新新, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰()   

  1. 中国科学院物理研究所,北京 100190
  • 收稿日期:2024-02-22 出版日期:2024-03-28 发布日期:2024-03-28
  • 通讯作者: 黄学杰 E-mail:sunqiangfu22@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
  • 作者简介:孙蔷馥(2000—),女,硕士研究生,研究方向为锂离子电池,E-mail:sunqiangfu22@mails.ucas.ac.cn

Reviews of selected 100 recent papers for lithium batteriesDec. 12023 to Jan. 312024

Qiangfu SUN(), Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()   

  1. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2024-02-22 Online:2024-03-28 Published:2024-03-28
  • Contact: Xuejie HUANG E-mail:sunqiangfu22@mails.ucas.ac.cn;xjhuang@iphy.ac.cn

摘要:

本文是一篇近两个月的锂电池文献评述,以“lithium”和“battery*”为关键词检索了Web of Science从2023年12月1日至2024年1月31日上线的锂电池研究论文,共有6213篇,选择其中100篇加以评论。正极材料的研究集中于高镍三元、富锂正极材料的掺杂改性和表面包覆,以及其在长循环过程中的结构演变等。负极材料的研究重点包括硅基负极的界面调控和材料制备优化以缓冲体积变化、金属锂负极的界面构筑与调控。固态电解质的研究主要包括氯化物固态电解质、硫化物固态电解质和聚合物固态电解质的结构设计以及相关性能研究,电解液研究则主要包括不同电解质盐和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。针对固态电池,正极材料的体相改性和表面包覆、复合正极制备与界面修饰、锂金属负极的界面构筑和三维结构设计有多篇文献报道。锂硫电池的研究重点是硫正极的结构设计、功能涂层和电解液的改进,固态锂硫电池也引起了广泛关注。电池工艺技术方面的研究包括干法等电极制备技术、黏结剂的研究。表征分析涵盖了正极材料的结构相变、锂沉积负极的界面演变等。理论模拟工作侧重于界面离子传输的研究,以及通过计算模拟来优化电极结构。

关键词: 锂电池, 正极材料, 负极材料, 电解质, 电池技术

Abstract:

This bimonthly review paper highlights 100 recent published papers on lithium batteries. We searched the Web of Science and found 6213 papers online from Dec. 1, 2023 to Jan. 31, 2024. 100 of them were selected to be highlighted. The selected papers of cathode materials focus on high-nickel ternary layered oxides and Li-rich oxides, and the effects of doping, interface modifications and structural evolution with prolonged cycling are investigated. For anode materials, silicon-based composite materials are improved by surface modification and optimized electrode structure to mitigate the effects of volume changes. Efforts have also been devoted to designing artificial interface and controlling the inhomogeneous plating of lithium metal anode. The relation of structure design and performances of chloride-based, sulfide-based and polymer-based solid-state electrolytes has been extensively studied. Different combination of solvents, lithium salts, and functional additives are used for liquid electrolytes to meet the requirements for battery applications. For solid-state batteries, the modification and surface coating of the cathode, the design of composite cathode, the interface to anode/electrolyte interface and 3D anode have been widely investigated. Studies on lithium-sulfur batteries are mainly focused on the structural design of the cathode and the development of functional coating and electrolytes, and solid state lithium-sulfur battery has also drawn large attentions. New binders and the dry electrode coating technology are developed for Li-ion batteries. There are a few papers for the characterization techniques of structural phase transition of the cathode materials and the interfacial evolution of lithium deposition, while theoretical papers are mainly related to the study of interfacial ion transport and the optimization of electrode structure.

Key words: lithium batteries, cathode material, anode material, solid state electrolyte, battery technology

中图分类号: