储能科学与技术 ›› 2024, Vol. 13 ›› Issue (6): 2068-2077.doi: 10.19799/j.cnki.2095-4239.2023.0955
林旗力1,2(), 陈珍1, 王晓虎1, 戚宏勋1(), 王伟1
收稿日期:
2023-12-28
修回日期:
2024-01-11
出版日期:
2024-06-28
发布日期:
2024-06-26
通讯作者:
戚宏勋
E-mail:qllin@cpecc.net;hxqi@cpecc.net
作者简介:
林旗力(1985—),男,博士,高级工程师,主要从事储能/氢能集成技术与商业模式研究,E-mail:qllin@cpecc.net;
基金资助:
Qili LIN1,2(), Zhen CHEN1, Xiaohu WANG1, Hongxun QI1(), Wei WANG1
Received:
2023-12-28
Revised:
2024-01-11
Online:
2024-06-28
Published:
2024-06-26
Contact:
Hongxun QI
E-mail:qllin@cpecc.net;hxqi@cpecc.net
摘要:
在“碳达峰、碳中和”战略背景下,氢能的重要性不断提升。当前,基于“电-氢-电”过程的氢储能总体处于示范应用阶段,储能成本是其形成竞争力的关键,但是关于规模化氢储能平准化成本(LCOES)的针对性研究未见报道。本文首先建立氢储能LCOES模型,对25 MW规模的氢储能电站系统进行了定量分析,而后预测了未来场景下的LCOES水平。结果表明,氢储能系统LCOES为4.758元/kWh,初始投资中制氢系统占比最高(44.66%),运行成本中制氢成本占比最高(42.99%)。电价对氢储能成本有一定影响,其每下降0.1元/kWh,LCOES降幅8.18%。虽然提升发电效率难度较大,但对氢储能的经济性非常关键,其每提升10%,LCOES平均降幅11.88%~12.50%。制氢系统和发电系统设备价格同时下降10%可带来LCOES 6.06%的降幅。储能时长对LCOES的影响较大,尤其是在时长较短时。当储能时长在4~8 h范围时,每增加1 h时长可使LCOES平均下降0.394元/kWh。未来随着水电解制氢和燃料电池设备价格的下降及效率的提升,氢储能有望成为长时、长周期储能领域具有竞争力的技术路线。
中图分类号:
林旗力, 陈珍, 王晓虎, 戚宏勋, 王伟. 基于“电-氢-电”过程的规模化氢储能经济性分析[J]. 储能科学与技术, 2024, 13(6): 2068-2077.
Qili LIN, Zhen CHEN, Xiaohu WANG, Hongxun QI, Wei WANG. Economic analysis of large-scale hydrogen energy storage based on the “electric-hydrogen-electric” process[J]. Energy Storage Science and Technology, 2024, 13(6): 2068-2077.
10 | 中国化学与物理电源行业协会储能应用分会. 2023中国新型储能产业发展白皮书[R]. 2023. |
Energy Storage Application Branch of China Industrial Association of Power Source. White paper on the development of China new energy storage industry[R]. 2023. | |
11 | 俞红梅, 邵志刚, 侯明, 等. 电解水制氢技术研究进展与发展建议[J]. 中国工程科学, 2021, 23(2): 146-152. |
YU H M, SHAO Z G, HOU M, et al. Hydrogen production by water electrolysis: Progress and suggestions[J]. Strategic Study of CAE, 2021, 23(2): 146-152. | |
12 | 潘光胜, 顾钟凡, 罗恩博, 等. 新型电力系统背景下的电制氢技术分析与展望[J]. 电力系统自动化, 2023, 47(10): 1-13. |
PAN G S, GU Z F, LUO E B, et al. Analysis and prospect of electrolytic hydrogen technology under background of new power systems[J]. Automation of Electric Power Systems, 2023, 47(10): 1-13. | |
13 | HE M, ZHOU H, LYU C, et al. Analysis of large-scale energy storage technology for renewable energy based on liquid hydrogen[C]// QIU L, WANG K, MA Y. International Cryogenic Engineering Conference and International Cryogenic Materials Conference. Singapore: Springer, 2023: 149-155. |
14 | 吴朝玲, 李永涛, 李媛, 等. 氢气储存和输运[M]. 北京: 化学工业出版社, 2021. |
WU C L, LI Y T, LI Y. Hydrogen storage and transportation[M]. Beijing: Chemical Industry Press, 2021. | |
15 | 王士博, 孔令国, 蔡国伟, 等. 电力系统氢储能关键应用技术现状、挑战及展望[J]. 中国电机工程学报, 2023, 43(17): 6660-6681. |
WANG S B, KONG L G, CAI G W, et al. Current status, challenges and prospects of key application technologies for hydrogen storage in power system[J]. Proceedings of the CSEE, 2023, 43(17): 6660-6681. | |
16 | 王明华. 氢能储运技术经济性分析及建立绿氨储运基地设想[J]. 现代化工, 2023, 43(6): 1-5. |
WANG M H. Economic analysis on hydrogen energy storage and transportation technologies and tentative plan in establishing a green ammonia storage-transportation base[J]. Modern Chemical Industry, 2023, 43(6): 1-5. | |
17 | 林旗力, 戚宏勋, 黄晶晶, 等. 碱性-质子交换膜水电解复合制氢平准化成本分析[J]. 储能科学与技术, 2023, 12(11): 3572-3580. |
LIN Q L, QI H X, HUANG J J, et al. Levelized cost of combined hydrogen production by water electrolysis with alkaline-proton exchange membrane[J]. Energy Storage Science and Technology, 2023, 12(11): 3572-3580. | |
18 | Renewable Energy Policy Network for the 21st Century. Renewables 2007 global status report[R]. 2008. |
19 | 百人会氢能中心, 车百智库. 氢储能经济性分析及应用前景研究[R]. 2023. |
EV100 Hydrogen Center, EV100plus. Economics analysis and prospect of hydrogen energy storage[R]. 2023. | |
20 | 徐进, 丁显, 宫永立, 等. 电解水制氢厂站经济性分析[J]. 储能科学与技术, 2022, 11(7): 2374-2385. |
XU J, DING X, GONG Y L, et al. Economic analysis of hydrogen production plant with water electrolysis[J]. Energy Storage Science and Technology, 2022, 11(7): 2374-2385. | |
21 | 张磊, 谢南宏, 曹田田, 等. 氢能在交通领域的应用及燃料电池汽车成本分析[J]. 石油石化绿色低碳, 2022, 7(4): 1-5, 30. |
ZHANG L, XIE N H, CAO T T, et al. Application of hydrogen energy in transportation and cost analysis of fuel cell vehicles[J]. Green Petroleum & Petrochemicals, 2022, 7(4): 1-5, 30. | |
22 | 刘健康. 考虑需求响应的含氢储能微电网低碳经济优化配置[D]. 吉林: 东北电力大学, 2023. |
LIU J K. Low-carbon economic optimal configuration of hydrogen energy storage microgrid considering demand response[D]. Jilin: Northeast Dianli University, 2023. | |
23 | 张轩, 樊昕晔, 吴振宇, 等. 氢能供应链成本分析及建议[J]. 化工进展, 2022, 41(5): 2364-2371. |
ZHANG X, FAN X Y, WU Z Y, et al. Hydrogen energy supply chain cost analysis and suggestions[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2364-2371. | |
24 | SUERMANN M, BENSMANN B, HANKE-RAUSCHENBACH R. Degradation of proton exchange membrane (PEM) water electrolysis cells: Looking beyond the cell voltage increase[J]. Journal of the Electrochemical Society, 2019, 166(10): F645-F652. |
25 | 江岳文, 杨国铭, 陈宇辛, 等. 考虑电解槽动态制氢效率的氢网运行优化[J]. 中国电机工程学报, 2023, 43(8): 3014-3027. |
JIANG Y W, YANG G M, CHEN Y X, et al. Optimal operation for the hydrogen network under consideration of the dynamic hydrogen production efficiency of electrolyzers[J]. Proceedings of the CSEE, 2023, 43(8): 3014-3027. | |
26 | KOJ J, WULF C, SCHREIBER A, et al. Site-dependent environmental impacts of industrial hydrogen production by alkaline water electrolysis[J]. Energies, 2017, 10(7): 860. |
27 | LEE B, CHAE H, CHOI N H, et al. Economic evaluation with sensitivity and profitability analysis for hydrogen production from water electrolysis in Korea[J]. International Journal of Hydrogen Energy, 2017, 42(10): 6462-6471. |
28 | LIU X Y, REDDI K, ELGOWAINY A, et al. Comparison of well-to-wheels energy use and emissions of a hydrogen fuel cell electric vehicle relative to a conventional gasoline-powered internal combustion engine vehicle[J]. International Journal of Hydrogen Energy, 2020, 45(1): 972-983. |
29 | 白城吉电氢能科技有限公司. 白城分布式发电制氢加氢一体化示范项目环境影响报告表[R]. 2023. |
Baicheng Jidian Hydrogen Energy Technology Co., LTD. Environmental impact report of Baicheng distributed generation hydrogen production and hydrogenation integrated demonstration project[R]. 2023. | |
30 | FAN J L, YU P W, LI K, et al. A levelized cost of hydrogen (LCOH) comparison of coal-to-hydrogen with CCS and water electrolysis powered by renewable energy in China[J]. Energy, 2022, 242: 123003. |
31 | 哈希姆·内里, 王才胜. 燃料电池的建模与控制及其在分布式发电中的应用[M]. 北京: 机械工业出版社, 2022. |
1 | 许传博, 刘建国. 氢储能在我国新型电力系统中的应用价值、挑战及展望[J]. 中国工程科学, 2022, 24(3): 89-99. |
XU C B, LIU J G. Hydrogen energy storage in China's new-type power system: Application value, challenges, and prospects[J]. Strategic Study of CAE, 2022, 24(3): 89-99. | |
2 | 国家能源局. 氢储能电站储氢系统运行规程(征求意见稿)[S]. 2023.National Energy Administration. Code for operation of hydrogen storage systems from hydrogen energy storage power (draft for public comments)[S]. 2023. |
3 | 王杭婧, 孙国正, 周颖. "双碳"目标下零碳氢储能市场推广研究——以安徽六安兆瓦级氢能源储能电站为例[J]. 商业经济, 2022(3): 110-112, 118. |
WANG H J, SUN G Z, ZHOU Y. Research on market promotion of zero-hydrocarbon energy storage under carbon peak and neutrality target: A case study of megawatt hydrogen energy storage power station in Anhui Lu'an[J]. Business & Economy, 2022(3): 110-112, 118. | |
4 | ALONSO A M, COSTA D, MESSAGIE M, et al. Techno-economic assessment on hybrid energy storage systems comprising hydrogen and batteries: A case study in Belgium[J]. International Journal of Hydrogen Energy, 2024, 52: 1124-1135. |
5 | ABDELGHANY M B, MARIANI V, LIUZZA D, et al. Hierarchical model predictive control for islanded and grid-connected microgrids with wind generation and hydrogen energy storage systems[J]. International Journal of Hydrogen Energy, 2024, 51: 595-610. |
6 | 张真, 黎妍. 氢储能经济性及应用前景研究[J]. 价格理论与实践, 2023(2): 93-97. |
ZHANG Z, LI Y. Economics analysis and prospect of hydrogen energy storage[J]. Price (Theory & Practice), 2023(2): 93-97. | |
7 | 何颖源, 陈永翀, 刘勇, 等. 储能的度电成本和里程成本分析[J]. 电工电能新技术, 2019, 38(9): 1-10. |
HE Y Y, CHEN Y C, LIU Y, et al. Analysis of cost per kilowatt-hour and cost per mileage for energy storage technologies[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38(9): 1-10. | |
8 | 文军, 刘楠, 裴杰, 等. 储能技术全生命周期度电成本分析[J]. 热力发电, 2021, 50(8): 24-29. |
WEN J, LIU N, PEI J, et al. Life cycle cost analysis for energy storage technology[J]. Thermal Power Generation, 2021, 50(8): 24-29. | |
9 | 刘阳, 滕卫军, 谷青发, 等. 规模化多元电化学储能度电成本及其经济性分析[J]. 储能科学与技术, 2023, 12(1): 312-318. |
LIU Y, TENG W J, GU Q F, et al. Scaled-up diversified electrochemical energy storage LCOE and its economic analysis[J]. Energy Storage Science and Technology, 2023, 12(1): 312-318. | |
31 | NEHRIR M H, WANG C S. Modeling and control of fuel cells: distributed generation applications[M]. Beijing: China Machine Press, 2022. |
32 | 全球能源互联网发展合作组织. 绿氢发展与展望[M]. 北京: 中国电力出版社, 2022. |
Global Energy Interconnection Development and Cooperation Organization. Development and prospect of green hydrogen[M]. Beijing: China Electric Power Press, 2022. | |
33 | 衣宝廉, 俞红梅, 侯中军, 等. 氢燃料电池[M]. 北京: 化学工业出版社, 2021. |
YI B L, YU H M, HOU Z J. Hydrogen fuel cell[M]. Beijing: Chemical Industry Press, 2021. | |
34 | International Energy Agency. Global Hydrogen Review 2022[R]. 2022. |
35 | 中国人民银行货币政策司. 全国银行间同业拆借中心受权公布贷款市场报价利率(LPR)公告[EB/OL]. (2023-11-20) [2023-11-25].http://www.pbc.gov.cn/zhengcehuobisi/125207/125213/125440/3876551/5139163/index.html. |
Monetary Policy Department of the People's Bank of China. The national interbank lending center was authorized to publish the loan market quotation rate (LPR) announcement [EB/OL]. (2023-11-20) [2023-11-25]. http://www.pbc.gov.cn/zhengcehuobisi/125207/125213/125440/3876551/5139163/index.html. | |
36 | WANG Y L, QIN Y M, MA Z B, et al. Operation optimisation of integrated energy systems based on cooperative game with hydrogen energy storage systems[J]. International Journal of Hydrogen Energy, 2023, 48(95): 37335-37354. |
[1] | 陈艺, 秦琪, 赵龙, 陈子坤, 王安宁. 新型储能技术的中国专利布局分析[J]. 储能科学与技术, 2024, 13(6): 2089-2098. |
[2] | 张楚, 陈栋才, 陈湘萍, 蔡永翔. 多应用场景下储能最优配置经济性效益分析[J]. 储能科学与技术, 2024, 13(6): 2078-2088. |
[3] | 张留淦, 周颖驰, 孙文兵, 叶楷, 陈龙祥. 利用ORC-VCR回收压缩热的预冷式CAES系统性能分析[J]. 储能科学与技术, 2024, 13(2): 611-622. |
[4] | 黎福超, 陈明彪, 杜群, 陈永珍, 宋文吉, 林文野, 冯自平. 基于流态冰浆蓄冷的深远海风电就地消纳[J]. 储能科学与技术, 2023, 12(12): 3730-3739. |
[5] | 张平, 康利斌, 王明菊, 赵广, 罗振华, 唐堃, 陆雅翔, 胡勇胜. 钠离子电池储能技术及经济性分析[J]. 储能科学与技术, 2022, 11(6): 1892-1901. |
[6] | 周晗, 李正宇, 徐俊辉, 陈留平, 龚领会. 我国可再生能源与盐穴氢储能技术耦合发电的分析与展望[J]. 储能科学与技术, 2022, 11(12): 4059-4066. |
[7] | 丁凯, 郑剑, 李伟, 黄曾睿, 王易, 钱一民, 郑子萱, 谢琦. 基于用户侧储能的电压暂降分级治理方案及其经济性分析[J]. 储能科学与技术, 2022, 11(10): 3381-3390. |
[8] | 傅德坤, 宋文吉, 陈明彪, 冯自平. 跨季节蓄冷技术及在设施农业应用的经济性分析[J]. 储能科学与技术, 2021, 10(6): 2385-2391. |
[9] | 王瑛滢, 傅德坤, 陈明彪, 宋文吉, 冯自平. 冬冷地区冰源热泵系统清洁供暖的经济性[J]. 储能科学与技术, 2021, 10(4): 1380-1387. |
[10] | 刘丽辉, 莫雅菁, 孙小琴, 李 杰. 板式相变储能单元的蓄热特性及其优化[J]. 储能科学与技术, 2020, 9(6): 1784-1789. |
[11] | 易红明, 吕志强, 张华民, 宋明明, 郑 琼, 李先锋. 钠离子电池钒基聚阴离子型正极材料的发展现状与应用挑战[J]. 储能科学与技术, 2020, 9(5): 1350-1369. |
[12] | 范永生, 赵璐璐, 刘庆华, 缪平. 陆上风场液流电池储能经济性分析[J]. 储能科学与技术, 2020, 9(3): 725-729. |
[13] | 邢作霞, 赵海川, 马士平, 代俊雯, 刘毓颖, 孙振庭. 电制热固体储热装置关键参数设计研究和经济性评估[J]. 储能科学与技术, 2019, 8(6): 1211-1216. |
[14] | 林俊豪,古雄文,马 丽. 基于优化调度的用户侧电池储能配置及控制方法[J]. 储能科学与技术, 2018, 7(1): 90-. |
[15] | 袁霜晨1,蔡声霞2,王守相1,黄碧斌3. 用户侧热/电综合储能系统经济性建模与分析[J]. 储能科学与技术, 2017, 6(5): 1099-1104. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||