储能科学与技术 ›› 2024, Vol. 13 ›› Issue (8): 2726-2736.doi: 10.19799/j.cnki.2095-4239.2024.0268
宋旭1(), 孙楠楠2, 曹恒超2, 朱桂香2, 李孟涵1, 刘晓日1,2,3(), 饶中浩1
收稿日期:
2024-03-28
修回日期:
2024-04-13
出版日期:
2024-08-28
发布日期:
2024-08-15
通讯作者:
刘晓日
E-mail:202231304010@stu.hebut.edu.cn;liuxiaori@hebut.edu.cn
作者简介:
宋旭(1999—),男,硕士研究生,研究方向为动力电池热管理,E-mail:202231304010@stu.hebut.edu.cn;
基金资助:
Xu SONG1(), Nannan SUN2, Hengchao CAO2, Guixiang ZHU2, Menghan LI1, Xiaori LIU1,2,3(), Zhonghao RAO1
Received:
2024-03-28
Revised:
2024-04-13
Online:
2024-08-28
Published:
2024-08-15
Contact:
Xiaori LIU
E-mail:202231304010@stu.hebut.edu.cn;liuxiaori@hebut.edu.cn
摘要:
对于使用冷媒直冷的动力电池热管理系统,制冷剂在管道内流动沸腾,管道过长造成电池包底部冷板流道内存在过热段,进而导致电池包的温差以及电池本身垂直方向上的均温性较差。本文针对一个含有48个方形电池的电池包,设计了两种并联蛇形流道结构的直冷板置于电池包底部来改善单蛇形流道所造成的电池包温度均匀性较差的问题。比较了电池包在30 ℃初始温度下1C倍率充/放电结束时三种直冷板流道内的平均温度和温度均匀性;比较了这三种流道结构下电池包的最大温度以及最大温差,分别分析了三种流道结构的电池包在水平方向上和竖直方向上的温度均匀性,并且提出了一种在电池包上层增设一个环绕小冷板的形式来优化电池包竖直方向的温差。分析结果表明,底置冷板的方式可以将电池包的最高温度控制在40 ℃以下并且可以保证电池包水平方向的温度均匀性,但电池包竖直方向上的温差过大,通过加设上层小冷板可以保证电池包竖直方向上的温差在整个充放电过程中位于5 ℃以下,满足电池包的温控要求。
中图分类号:
宋旭, 孙楠楠, 曹恒超, 朱桂香, 李孟涵, 刘晓日, 饶中浩. 基于并联蛇形流道的动力电池冷媒直冷热管理系统研究[J]. 储能科学与技术, 2024, 13(8): 2726-2736.
Xu SONG, Nannan SUN, Hengchao CAO, Guixiang ZHU, Menghan LI, Xiaori LIU, Zhonghao RAO. Research on a power battery thermal management system using direct refrigerant cooling with parallel serpentine flow paths[J]. Energy Storage Science and Technology, 2024, 13(8): 2726-2736.
1 | GUO J, JIANG F M. A novel electric vehicle thermal management system based on cooling and heating of batteries by refrigerant[J]. Energy Conversion and Management, 2021, 237: 114145. DOI: 10.1016/j.enconman.2021.114145. |
2 | ZENG J X, FENG S, LAI C G, et al. Prediction on thermal performance of refrigerant-based battery thermal management system for a HEV battery pack[J]. International Journal of Heat and Mass Transfer, 2023, 201: 123657. DOI: 10.1016/j.ijheatmasstransfer.2022.123657. |
3 | WANG Z R, HUANG L P, HE F. Design and analysis of electric vehicle thermal management system based on refrigerant-direct cooling and heating batteries[J]. Journal of Energy Storage, 2022, 51: 104318. DOI: 10.1016/j.est.2022.104318. |
4 | CHENG G, WANG Z Z, TANG T Q, et al. A novel double-layer lithium-ion battery thermal management system based on composite PCM optimized heat dissipation and preservation in cold climates[J]. Journal of Energy Storage, 2024, 85: 110992. DOI: 10.1016/j.est.2024.110992. |
5 | CHOI H, HONG J, LEE S, et al. A novel battery thermal management system for cooling/preheating utilizing a polymer intercell heat exchanger with phase change material[J]. Applied Thermal Engineering, 2024, 238: 122248. DOI: 10.1016/j.applthermaleng.2023.122248. |
6 | DENG J, HUANG Q Q, LI X X, et al. Influence mechanism of battery thermal management with flexible flame retardant composite phase change materials by temperature aging[J]. Renewable Energy, 2024, 222: 119922. DOI: 10.1016/j.renene.2023.119922. |
7 | JIANG W, LYU P Z, LIU X J, et al. An immersion flow boiling heat dissipation strategy for efficient battery thermal management in non-steady conditions[J]. Applied Thermal Engineering, 2024, 245: 122783. DOI: 10.1016/j.applthermaleng.2024.122783. |
8 | KUMAR K, SARKAR J, MONDAL S S. Multi-scale-multi-domain simulation of novel microchannel-integrated cylindrical Li-ion battery thermal management: nanoparticle shape effect[J]. Journal of Energy Storage, 2024, 84: 110824. DOI: 10.1016/j.est.2024.110824. |
9 | LIU X, WU P Y, SU C Q, et al. Li-ion battery thermal management and thermal runaway suppression method of combining phase change material and annular thermoelectric cooler[J]. Journal of Energy Storage, 2024, 82: 110564. DOI: 10.1016/j.est.2024.110564. |
10 | 贺元骅, 余兴科, 樊榕, 等. 动力锂离子电池热管理技术研究进展[J]. 电池, 2022, 52(3): 337-341. DOI: 10.19535/j.1001-1579.2022.03.024. |
HE Y H, YU X K, FAN R, et al. Research progress in thermal management technology of power Li-ion battery[J]. Battery Bimonthly, 2022, 52(3): 337-341. DOI: 10.19535/j.1001-1579.2022.03.024. | |
11 | ZHANG X W, GAO Q, YANG S C, et al. Co-regulation of integrated thermal management based on refrigerant cooling for electric vehicles[J]. Applied Thermal Engineering, 2023, 226: 120306. DOI: 10.1016/j.applthermaleng.2023.120306. |
12 | ZHAO G, WANG X L, NEGNEVITSKY M, et al. An up-to-date review on the design improvement and optimization of the liquid-cooling battery thermal management system for electric vehicles[J]. Applied Thermal Engineering, 2023, 219: 119626. DOI: 10.1016/j.applthermaleng.2022.119626. |
13 | 乔雨民. 锂离子电池预锂化技术研究进展[J]. 中国粉体工业, 2024(1): 20-22, 29. |
QIAO Y M. Research progress of pre-lithiation technology for lithium ion batteries[J]. China Powder Industry, 2024(1): 20-22, 29. | |
14 | 刘霏霏, 鲍荣清, 程贤福, 等. 服役工况下车用锂离子动力电池散热方法综述[J]. 储能科学与技术, 2021, 10(6): 2269-2282. DOI: 10.19799/j.cnki.2095-4239.2021.0156. |
LIU F F, BAO R Q, CHENG X F, et al. Review on heat dissipation methods of lithium-ion power battery for vehicles under service conditions[J]. Energy Storage Science and Technology, 2021, 10(6): 2269-2282. DOI: 10.19799/j.cnki.2095-4239.2021.0156. | |
15 | 何贤, 邓冬, 苏健, 等. 8kW车载动力电池直冷系统实验研究[J]. 制冷学报, 2019, 40(2): 20-27. DOI: 10.3969/j.issn.0253-4339.2019.02.020. |
HE X, DENG D, SU J, et al. Experimental research on an 8 kW direct cooling unit for power BatteryUsed in a vehicle[J]. Journal of Refrigeration, 2019, 40(2): 20-27. DOI: 10.3969/j.issn.0253-4339.2019.02.020. | |
16 | 胡凌韧, 方奕栋, 杨文量, 等. 平行小通道直冷板传热特性实验研究[J]. 制冷学报, 2021, 42(3): 87-92. DOI: 10.3969/j.issn.0253-4339.2021.03.087. |
HU L R, FANG Y D, YANG W L, et al. Experimental study on heat transfer characteristics of a parallel mini-channel direct cooling plate[J]. Journal of Refrigeration, 2021, 42(3): 87-92. DOI: 10.3969/j.issn.0253-4339.2021.03.087. | |
17 | 高帅, 王俊博, 朱佳慧, 等. 基于二次节流的电池直冷系统设计与分析[J]. 低温与超导, 2023, 51(5): 56-63, 89. DOI: 10.16711/j.1001-7100.2023.05.009. |
GAO S, WANG J B, ZHU J H, et al. Design and analysis of direct cooling system for power battery based on second-throttling[J]. Cryogenics & Superconductivity, 2023, 51(5): 56-63, 89. DOI: 10.16711/j.1001-7100.2023.05.009. | |
18 | 高帅, 王俊博, 朱佳慧, 等. 制冷剂相态变化对动力电池直冷系统温控性能的影响分析[J]. 制冷学报, 2023, 44(3): 58-66, 80. DOI: 10.3969/j.issn.0253-4339.2023.03.058. |
GAO S, WANG J B, ZHU J H, et al. Influence of refrigerant phase change on temperature control performance of direct cooling system for power batteries[J]. Journal of Refrigeration, 2023, 44(3): 58-66, 80. DOI: 10.3969/j.issn.0253-4339.2023.03.058. | |
19 | YAO M L, GAN Y H, LIANG J L, et al. Performance simulation of a heat pipe and refrigerant-based lithium-ion battery thermal management system coupled with electric vehicle air-conditioning[J]. Applied Thermal Engineering, 2021, 191: 116878. DOI: 10.1016/j.applthermaleng.2021.116878. |
20 | 王肖军, 张恒运, 黄兴华, 等. 基于微小槽道的冷媒直冷电池热管理系统性能研究与优化[J]. 过程工程学报, 2023, 23(1): 154-162. DOI: 10.12034/j.issn.1009-606X.222043. |
WANG X J, ZHANG H Y, HUANG X H, et al. Research and optimization on battery thermal management system with refrigerant cooling based on mini-channels[J]. The Chinese Journal of Process Engineering, 2023, 23(1): 154-162. DOI: 10.12034/j.issn.1009-606X.222043. | |
21 | PARK S, JANG D S, LEE D C, et al. Simulation on cooling performance characteristics of a refrigerant-cooled active thermal management system for lithium ion batteries[J]. International Journal of Heat and Mass Transfer, 2019, 135: 131-141. DOI: 10.1016/j.ijheatmasstransfer.2019.01.109. |
22 | HONG S H, JANG D S, PARK S, et al. Thermal performance of direct two-phase refrigerant cooling for lithium-ion batteries in electric vehicles[J]. Applied Thermal Engineering, 2020, 173: 115213. DOI: 10.1016/j.applthermaleng.2020.115213. |
23 | 鲍文迪. 直冷式动力电池热管理性能分析[D]. 长春: 吉林大学, 2019.BAO W D. Thermal management performance analysis of direct cooling power battery[D]. Changchun: Jilin University, 2019. |
24 | WANG Y, GAO Q, WANG H W. Structural design and its thermal management performance for battery modules based on refrigerant cooling method[J]. International Journal of Energy Research, 2021, 45(3): 3821-3837. DOI: 10.1002/er.6035. |
25 | LIAN Y B, LING H P, SONG G, et al. Experimental investigation on a heating-and-cooling difunctional battery thermal management system based on refrigerant[J]. Applied Thermal Engineering, 2023, 225: 120138. DOI: 10.1016/j.applthermaleng.2023.120138. |
26 | WANG J B, GAO S, ZHU J H, et al. Thermal performance analysis and burning questions of refrigerant direct cooling for electric vehicle battery[J]. Applied Thermal Engineering, 2023, 232: 121055. DOI: 10.1016/j.applthermaleng.2023.121055. |
27 | 聂磊, 王敏弛, 赵耀, 等. 纯电动汽车冷媒直冷电池热管理系统的实验研究[J]. 制冷学报, 2020, 41(4): 52-58. DOI: 10.3969/j.issn.0253-4339.2020.04.052. |
NIE L, WANG M C, ZHAO Y, et al. Experimental study on direct refrigerant battery cooling system for electric vehicle[J]. Journal of Refrigeration, 2020, 41(4): 52-58. DOI: 10.3969/j.issn.0253-4339.2020.04.052. | |
28 | SHEN M, GAO Q. Structure design and effect analysis on refrigerant cooling enhancement of battery thermal management system for electric vehicles[J]. Journal of Energy Storage, 2020, 32: 101940. DOI: 10.1016/j.est.2020.101940. |
29 | LUO D, ZHAO Y, CAO J, et al. Performance analysis of a novel thermoelectric-based battery thermal management system[J]. Renewable Energy, 2024, 224: 120193. DOI: 10.1016/j.renene.2024.120193. |
30 | SINGIRIKONDA S, OBULESU Y P. Adaptive secondary loop liquid cooling with refrigerant cabin active thermal management system for electric vehicle[J]. Journal of Energy Storage, 2022, 50: 104624. DOI: 10.1016/j.est.2022.104624. |
31 | WANG X J, ZHANG H Y, YI Z Z, et al. Thermal characteristics of refrigerant flow boiling in two mini-channel heat sinks of different aspect ratios for battery thermal management[J]. Applied Thermal Engineering, 2022, 217: 119173. DOI: 10.1016/j.applthermaleng.2022.119173. |
32 | DE ROSSI F, MAURO A W, ROSATO A. Local heat transfer coefficients and pressure gradients for R-134a during flow boiling at temperatures between -9 ℃ and +20 ℃[J]. Energy Conversion and Management, 2009, 50(7): 1714-1721. DOI: 10.1016/j.enconman.2009.03.022. |
33 | CHEN Y, LIU X R, RAO Z H. A numerical study on the effects of using combined flow fields and obstacles on the performance of proton exchange membrane fuel cells[J]. Fuel Cells, 2023, 23(3): 273-289. DOI: 10.1002/fuce.202200207. |
34 | EL-ZOHEIRY R M, OOKAWARA S, AHMED M. Efficient fuel utilization by enhancing the under-rib mass transport using new serpentine flow field designs of direct methanol fuel cells[J]. Energy Conversion and Management, 2017, 144: 88-103. DOI: 10.1016/j.enconman.2017.04.041. |
[1] | 陈国贺, 吕培召, 李孟涵, 饶中浩. 锂离子电池热失控传播特性及其抑制策略研究进展[J]. 储能科学与技术, 2024, 13(7): 2470-2482. |
[2] | 刘松燕, 王卫良, 彭世亮, 吕俊复. 兼顾高/低温环境性能的动力电池热管理系统设计[J]. 储能科学与技术, 2024, 13(7): 2181-2191. |
[3] | 张雅新, 张泉, 娄旭静, 周浩, 陈志文, 龙刚. 集装箱式储能电站两相冷板液冷系统的温控效果研究[J]. 储能科学与技术, 2024, 13(6): 1921-1928. |
[4] | 张云峰, 张学文, 钟威, 蒋杜伟, 陈泽伟, 张杰. 石蜡与低熔点合金双级联相变材料强化板翅式散热器换热性能的数值模拟[J]. 储能科学与技术, 2024, 13(5): 1460-1470. |
[5] | 张坎, 付婷, 王江波. 基于拓扑优化方法的蛛网散热结构均温性研究[J]. 储能科学与技术, 2024, 13(5): 1721-1730. |
[6] | 田根源. 云计算技术在新能源汽车智能制造中的应用与发展[J]. 储能科学与技术, 2024, 13(5): 1748-1750. |
[7] | 罗泽飞, 覃元庆. 新能源汽车电池智能制造工艺的创新与优化研究[J]. 储能科学与技术, 2024, 13(5): 1751-1753. |
[8] | 柯奥, 阳如坤, 吴学科. 动力电池智能卷绕技术[J]. 储能科学与技术, 2024, 13(4): 1176-1187. |
[9] | 刘佳, 马志强, 刘广忱, 高俊东, 李宏勋. 多尺度分解下GRU-TCN集成的动力电池剩余使用寿命预测方法[J]. 储能科学与技术, 2024, 13(3): 1009-1018. |
[10] | 廖琪, 曹小林, 邓谊柏, 杨耀林, 陈挺. 有轨电车超级电容模组液冷散热仿真分析[J]. 储能科学与技术, 2024, 13(2): 702-711. |
[11] | 宋梦琼, 彭宇, 廖自强. 基于电化学热耦合模型的电池热管理研究[J]. 储能科学与技术, 2024, 13(2): 578-585. |
[12] | 徐鑫甜, 张碧霄, 朱信龙, 杨凯杰. 基于电池箱体开孔的储能电池系统精细化热设计优化研究[J]. 储能科学与技术, 2024, 13(2): 515-525. |
[13] | 唐盼春, 严嵘, 张灿, 孙泽. 堆叠式车载超级电容器热管理方式分析[J]. 储能科学与技术, 2024, 13(2): 483-491. |
[14] | 梁宏毅, 陈锋, 甘友毅, 邵丹. 动力锂电池三元正极低温性能研究[J]. 储能科学与技术, 2024, 13(1): 293-298. |
[15] | 曾少鸿, 吴伟雄, 刘吉臻, 汪双凤, 叶石丰, 冯振宇. 锂离子电池浸没式冷却技术研究综述[J]. 储能科学与技术, 2023, 12(9): 2888-2903. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||