储能科学与技术 ›› 2024, Vol. 13 ›› Issue (8): 2726-2736.doi: 10.19799/j.cnki.2095-4239.2024.0268

• 储能系统与工程 • 上一篇    下一篇

基于并联蛇形流道的动力电池冷媒直冷热管理系统研究

宋旭1(), 孙楠楠2, 曹恒超2, 朱桂香2, 李孟涵1, 刘晓日1,2,3(), 饶中浩1   

  1. 1.河北工业大学能源与环境工程学院,先进储能技术与装备河北省工程研究中心,天津 300401
    2.潍柴动力股份有限公司,山东 潍坊 261001
    3.河北工业大学化工学院,天津 300401
  • 收稿日期:2024-03-28 修回日期:2024-04-13 出版日期:2024-08-28 发布日期:2024-08-15
  • 通讯作者: 刘晓日 E-mail:202231304010@stu.hebut.edu.cn;liuxiaori@hebut.edu.cn
  • 作者简介:宋旭(1999—),男,硕士研究生,研究方向为动力电池热管理,E-mail:202231304010@stu.hebut.edu.cn
  • 基金资助:
    河北省教育厅科学研究项目(JZX2024003);天津市自然科学基金(23JCZDJC00490)

Research on a power battery thermal management system using direct refrigerant cooling with parallel serpentine flow paths

Xu SONG1(), Nannan SUN2, Hengchao CAO2, Guixiang ZHU2, Menghan LI1, Xiaori LIU1,2,3(), Zhonghao RAO1   

  1. 1.Hebei Engineering Research Center of Advanced Energy Storage Technology and Equipment, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
    2.Weichai Power Co. , Ltd. , Weifang 261001, Shandong, China
    3.School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
  • Received:2024-03-28 Revised:2024-04-13 Online:2024-08-28 Published:2024-08-15
  • Contact: Xiaori LIU E-mail:202231304010@stu.hebut.edu.cn;liuxiaori@hebut.edu.cn

摘要:

对于使用冷媒直冷的动力电池热管理系统,制冷剂在管道内流动沸腾,管道过长造成电池包底部冷板流道内存在过热段,进而导致电池包的温差以及电池本身垂直方向上的均温性较差。本文针对一个含有48个方形电池的电池包,设计了两种并联蛇形流道结构的直冷板置于电池包底部来改善单蛇形流道所造成的电池包温度均匀性较差的问题。比较了电池包在30 ℃初始温度下1C倍率充/放电结束时三种直冷板流道内的平均温度和温度均匀性;比较了这三种流道结构下电池包的最大温度以及最大温差,分别分析了三种流道结构的电池包在水平方向上和竖直方向上的温度均匀性,并且提出了一种在电池包上层增设一个环绕小冷板的形式来优化电池包竖直方向的温差。分析结果表明,底置冷板的方式可以将电池包的最高温度控制在40 ℃以下并且可以保证电池包水平方向的温度均匀性,但电池包竖直方向上的温差过大,通过加设上层小冷板可以保证电池包竖直方向上的温差在整个充放电过程中位于5 ℃以下,满足电池包的温控要求。

关键词: 动力电池, 热管理, 冷媒直冷, 并联蛇形流道, 均温性

Abstract:

For the thermal management system of a power battery using direct refrigerant cooling, the refrigerant flows and boils in the pipeline, and the pipeline is too long, resulting in superheated segments in the flow paths of the cold plate. These superheated segments cause the temperature difference between the battery packs and the poor temperature uniformity on the vertical side of the battery. In this paper, two cold plates with parallel serpentine flow path structures placed at the bottom of the battery pack were designed for a battery pack containing 48 square cells to improve the poor temperature uniformity caused by the single serpentine flow path. This paper compares the average temperature and temperature uniformity within the flow paths of three direct-cooled plates at the end of the discharge rate of 1C of a battery pack at an initial temperature of 30 ℃. The maximum temperature and the temperature difference of the battery packs under these three flow path structures are compared. The temperature uniformity of the battery packs with the three flow path structures is analyzed horizontally and vertically. Adding a small surrounded cold plate in the upper layer of the battery pack should optimize the temperature difference vertically. The results show that the bottom cold plate can control the maximum temperature of the battery pack below 40 ℃ and ensure horizontal temperature uniformity. However, the temperature difference in the vertical direction of the battery pack is too large. By adding a small cold plate on the top layer, the temperature difference in the vertical direction of the battery pack can be maintained below 5 ℃ throughout the entire charging and discharging process, thereby fulfilling the temperature control requirements.

Key words: power battery, thermal management, refrigerant direct cooling, parallel serpentine flow paths, homogeneity

中图分类号: