1 |
韩鑫. 低温环境下锂离子电池析锂特性及其影响研究[D]. 北京: 北京交通大学, 2021.
|
|
HAN X. Research on the characteristics and influence of lithium plating in lithium-ion batteries at low temperature[D]. Beijing: Beijing Jiaotong University, 2021.
|
2 |
赵世玺, 郭双桃, 赵建伟, 等. 锂离子电池低温特性研究进展[J]. 硅酸盐学报, 2016, 44(1): 19-28.
|
|
ZHAO S X, GUO S T, ZHAO J W, et al. Development on low-temperature performance of lithium ion batteries[J]. Journal of the Chinese Ceramic Society, 2016, 44(1): 19-28.
|
3 |
PLICHTA E J, BEHL W K. A low-temperature electrolyte for lithium and lithium-ion batteries[J]. Journal of Power Sources, 2000, 88(2): 192-196.
|
4 |
雷治国, 张承宁, 李军求, 等. 电动车用锂离子电池低温性能研究[J]. 汽车工程, 2013, 35(10): 927-933.
|
|
LEI Z G, ZHANG C N, LI J Q, et al. A study on the low-temperature performance of lithium-ion battery for electric vehicles[J]. Automotive Engineering, 2013, 35(10): 927-933.
|
5 |
BELGIBAYEVA A, RAKHMETOVA A, RAKHATKYZY M, et al. Lithium-ion batteries for low-temperature applications: Limiting factors and solutions[J]. Journal of Power Sources, 2023, 557: 232550. DOI: 10.1016/j.jpowsour.2022.232550.
|
6 |
CHEN X P, LI Z L, ZHAO H, et al. Dominant solvent-separated ion pairs in electrolytes enable superhigh conductivity for fast-charging and low-temperature lithium ion batteries[J]. ACS Nano, 2024, 18(11): 8350-8359.
|
7 |
谢晓华. 锂离子电池低温用有机液体电解质的性能研究[D]. 上海: 中国科学院研究生院(上海微系统与信息技术研究所), 2008.
|
|
XIE X H. Research on organic liquid electrolyte for low temperature lithium ion battery[D]. Shanghai: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 2008.
|
8 |
LUO L B, CHEN K A, CHEN H, et al. Enabling ultralow-temperature (-70 ℃) lithium-ion batteries: Advanced electrolytes utilizing weak-solvation and low-viscosity nitrile cosolvent[J]. Advanced Materials, 2024, 36(5): 2308881. DOI: 10.1002/adma. 202308881.
|
9 |
CHEN Y Q, HE Q, ZHAO Y, et al. Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery[J]. Nature Communications, 2023, 14: 8326.
|
10 |
ZHANG S S, XU K, JOW T R. Electrochemical impedance study on the low temperature of Li-ion batteries[J]. Electrochimica Acta, 2004, 49(7): 1057-1061.
|
11 |
LI L C, LV W X, CHEN J, et al. Lithium difluorophosphate (LiPO2F2): An electrolyte additive to help boost low-temperature behaviors for lithium-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(9): 11900-11914.
|
12 |
ZHAO Y M, HU Z L, ZHAO Z F, et al. Strong solvent and dual lithium salts enable fast-charging lithium-ion batteries operating from -78 to 60 ℃[J]. Journal of the American Chemical Society, 2023, 145(40): 22184-22193.
|
13 |
PARK G, GUNAWARDHANA N, NAKAMURA H, et al. The study of electrochemical properties and lithium deposition of graphite at low temperature[J]. Journal of Power Sources, 2012, 199: 293-299.
|
14 |
YAN Y, BEN L B, ZHAN Y J, et al. Nano-Sn embedded in expanded graphite as anode for lithium ion batteries with improved low temperature electrochemical performance[J]. Electrochimica Acta, 2016, 187: 186-192.
|
15 |
LU L, ZHANG B, SONG J, et al. Synthesis of MnO-Sn cubes embedding in nitrogen-doped carbon nanofibers with high lithium-ion storage performance[J]. Nanotechnology, 2021, 33(11). DOI: 10.1088/1361-6528/ac4064.
|
16 |
XU J, WANG X, YUAN N Y, et al. Graphite-based lithium ion battery with ultrafast charging and discharging and excellent low temperature performance[J]. Journal of Power Sources, 2019, 430: 74-79.
|
17 |
TONG J S, SU A Y, MA T, et al. Boosting low temperature performance of lithium ion batteries at -40 ℃ using a binary surface coated Li3V2(PO4)3 cathode material[J]. Advanced Functional Materials, 2024, 34(10): 2310934. DOI: 10.1002/adfm.202310934.
|
18 |
DONG X L, YANG Y, LI P L, et al. A high‐rate and long‐life rechargeable battery operated at -75 ℃[J]. Batteries & Supercaps, 2020. DOI:10.1002/batt.202000117.
|
19 |
LV Y, HUANG S F, ZHANG J H, et al. Antimony doping enabled radially aligned microstructure in LiNi0.91Co0.06Al0.03O2 cathode for high-voltage and low-temperature lithium battery[J]. Advanced Functional Materials, 2024: 2312284.
|
20 |
ZHAO B, XIE J W, ZHUANG H, et al. Improved low-temperature performance of surface modified lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials for lithium ion batteries[J]. Solid State Ionics, 2020, 347: 115245.
|