储能科学与技术 ›› 2024, Vol. 13 ›› Issue (7): 2300-2307.doi: 10.19799/j.cnki.2095-4239.2024.0379

• 低温电池专刊 • 上一篇    下一篇

低温锂离子电池测试标准及研究进展

王文涛1(), 魏一凡1, 黄鲲1, 吕国伟1, 张思瑶1, 唐昕雅1, 陈泽彦1, 林清源1, 母志鹏1, 王昆桦1, 才华2, 陈军1,3()   

  1. 1.威凯检测技术有限公司,中国电器科学研究院股份有限公司,广东 广州 510000
    2.嘉兴威凯检测技术有限公司,中国电器科学研究院股份有限公司,浙江 嘉兴 314000
    3.工业产品环境适应性全国重点实验室,中国电器科学研究院股份有限公司,广东 广州 510000
  • 收稿日期:2024-05-06 修回日期:2024-05-29 出版日期:2024-07-28 发布日期:2024-07-23
  • 通讯作者: 陈军 E-mail:wangwt@cei1958.com;J-chen@cei958.com
  • 作者简介:王文涛(1988—),男,本科,工程师,研究方向为储能科学与技术及标准化,E-mail:wangwt@cei1958.com
  • 基金资助:
    中国机械工业集团有限公司青年科技基金(QNJJ-PY-2023-07)

Testing standards and developmental advances for low-temperature Li-ion batteries

Wentao WANG1(), Yifan WEI1, Kun HUANG1, Guowei LV1, Siyao ZHANG1, Xinya TANG1, Zeyan CHEN1, Qingyuan LIN1, Zhipeng MU1, Kunhua WANG1, Hua CAI2, Jun CHEN1,3()   

  1. 1.CVC Testing Technology Co. , Ltd. , China National Electric Apparatus Research Institute Co. , Ltd. , Guangzhou 510000, Guangdong, China
    2.CVC Testing Technology (Jiaxing) Co. , Ltd. , China National Electric Apparatus Research Institute Co. , Ltd. , Jiaxing 314000, Zhejiang, China
    3.State & Key Laboratory of Environmental Adaptability for Industrial Products, China National Electric Apparatus Research Institute Co. , Ltd. , Guangzhou 510000, Guangodng, China
  • Received:2024-05-06 Revised:2024-05-29 Online:2024-07-28 Published:2024-07-23
  • Contact: Jun CHEN E-mail:wangwt@cei1958.com;J-chen@cei958.com

摘要:

锂离子电池因其能量密度高、使用寿命长和无记忆效应等优势逐渐延伸至了低温环境领域,然而锂离子电池在低温环境下存在容量快速衰减、倍率性能差等问题。本文通过对近期相关文献的探讨,对现有锂离子电池测试标准进行了差异化分析,重点分析了不同测试标准对锂离子电池低温测试条件以及技术要求的差异。对于锂离子电池低温性能提升策略,主要从电解液设计及电极材料设计的角度进行了介绍;在电解液设计方面,重点介绍了电解液添加剂设计、共溶剂设计、锂盐改性设计以及锂盐与溶剂复合改性设计等策略;在电极材料设计方面,主要介绍了纳米化、掺杂、包覆、掺杂/包覆复合改性、异质结构设计等策略。综合分析表明,结合现有锂离子电池测试标准要求,采用电解液改性设计结合电极材料结构设计的策略,通过提升电解液在低温条件下的离子电导率与增强电极材料在低温条件下的电荷转移能力,有望克服锂离子电池在低温环境下容量衰减快、倍率性能差等问题。

关键词: 锂离子电池, 低温性能, 电解质, 测试标准

Abstract:

Lithium-ion batteries (LIBs) have gradually extended to the field of low-temperature environment because of their advantages such as high energy density, long cycle life and no memory effect. However, LIBs suffer from rapid capacity decay and poor rate performance in low-temperature environment. Based on the discussion of the recent relevant literature, this paper makes a differentiation analysis of the existing LIBs test standards, focusing on the difference of different test standards on the low-temperature test conditions and technical requirements. The strategy of improving low-temperature performance of LIBs is introduced mainly from the Angle of electrolyte design and electrode material design. In the aspect of electrolyte design, the strategies of electrolyte additive design, co-solvent design, lithium salt modification design and lithium salt and solvent composite modification design are introduced. In the aspect of electrode material design, the strategies of nanization, doping, coating, doping/coating composite modification and heterojunction design are mainly introduced. The comprehensive analysis shows that, combined with the requirements of existing LIBs test standards, the strategy of electrolyte modification design combined with electrode material structure design is expected to overcome the problems such as fast capacity decay and poor rate performance of LIBs at low temperatures by improving the ionic conductivity of electrolyte and enhancing the charge transfer ability of electrode materials.

Key words: lithium-ion battery, low-temperature performance, electrolyte, testing standards

中图分类号: