储能科学与技术 ›› 2024, Vol. 13 ›› Issue (7): 2308-2316.doi: 10.19799/j.cnki.2095-4239.2024.0426
赵飞1,2(), 陈英华1,2, 马征1, 李茜1(), 明军1,2()
收稿日期:
2024-05-13
修回日期:
2024-06-07
出版日期:
2024-07-28
发布日期:
2024-07-23
通讯作者:
李茜,明军
E-mail:zhaojunhua@ciac.ac.cn;qianli@ciac.ac.cn;jun.ming@ciac.ac.cn
作者简介:
赵飞(1998—),男,博士研究生,研究方向为锂离子电池低温电解质设计及界面解析,E-mail:zhaojunhua@ciac.ac.cn;
基金资助:
Fei ZHAO1,2(), Yinghua CHEN1,2, Zheng MA1, Qian LI1(), Jun MING1,2()
Received:
2024-05-13
Revised:
2024-06-07
Online:
2024-07-28
Published:
2024-07-23
Contact:
Qian LI, Jun MING
E-mail:zhaojunhua@ciac.ac.cn;qianli@ciac.ac.cn;jun.ming@ciac.ac.cn
摘要:
钾离子电池因其能量密度高、廉价易得等特点,已成为有潜力的储能设备,尤其钾离子更小的斯托克斯半径,使超低温钾离子电池成为可能。然而,传统电解质会使钾离子电池在低温下生长枝晶,导致电池失效并造成安全隐患。因此,改善电解质的低温特性对提高钾离子电池低温性能至关重要。本文综述了近些年钾离子电池低温电解质的研究进展,其大致可分为三类,即非水系电解液、水系电解液和固态电解质。其中,非水系电解液大多含弱溶剂化醚类溶剂和添加剂,提高界面去溶剂化过程的同时使电极表面形成良好的界面膜,以提高电池的低温性能;水系电解液通过引入特定的添加剂分子降低电解液凝固点的同时破坏H2O分子间氢键网络,实现电池低温性能;固态电解质以准固态电解质为主,使聚合物骨架孔道中保留少量液态电解液以提高电解质体相离子传输,并降低电解质与电极界面接触阻抗,最终提高电池的低温性能。
中图分类号:
赵飞, 陈英华, 马征, 李茜, 明军. 钾离子电池低温电解质的研究进展[J]. 储能科学与技术, 2024, 13(7): 2308-2316.
Fei ZHAO, Yinghua CHEN, Zheng MA, Qian LI, Jun MING. Advances in low-temperature electrolytes for potassium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(7): 2308-2316.
表1
低温钾离子电池组成及性能"
电解质组分 | 温度 | 电池体系 | 电流密度/(mA/g) | 比容量/(mAh/g) | 循环 圈数 | 容量 保持率 | 功率密度/ (Wh/kg) |
---|---|---|---|---|---|---|---|
1 mol/L KFSI in THF[ | 0 ℃ | 碳纳米纤维||石墨 | 50 | 200 | — | — | — |
0.91 mol/L KFSI in DEECl[ | -5 ℃ | 普鲁士蓝||石墨 | 20 | 65.5 | 80 | — | — |
1 mol/L KFSI in MTHF[ | -20 ℃ | 预钾化的3, 4, 9, 10-苝-四羧酸-二酐||石墨 | — | >100 | 100 | 94.38% | 197 |
0.4 mol/L KPF6 in DME+2 vol.% PDMS[ | -40 ℃ | 预钾化的3, 4, 9, 10-苝-四羧酸-二酐||无负极Cu | 26 | 82.8 | 50 | 82% | 152 |
1 mol/L KPF6 in DME+20 mmol/L LiNO3[ | -40 ℃ | 3, 4, 9, 10-苝-四羧酸-二酐||硬碳 | 65 | 89 | 100 | 79% | 157 |
4 mol/L KFSI in PC[ | 0 ℃ | 普鲁士白||石墨 | 200 | >60 | 1000 | 92.1% | — |
2 mol/L KCF3SO3 in H2O+HBCD[ | -20 ℃ | 六氰基铁酸铜||3, 4, 9, 10-苝四甲酰二亚胺-乙烯二胺共聚物 | — | >80 | 60 | 约100% | — |
10 mol/kg KCF3COO in H2O[ | -35 ℃ | K1.55Fe[Fe-(CN)6]0.95·1.03H2O||3,4,9,10-苝四羧酸二酰亚胺 | — | >90 | 1000 | 87.5% | 41.9 |
KFSI-L[ | -40 ℃ | PHA@RP@BNC||PTCDA | 100 | >60 | 200 | 93.6% | — |
全氟磺酸树脂聚合物电解质+PC/EC混合溶液[ | -15 ℃ | 3, 4, 9, 10-苝-四羧酸-二酐||石墨 | 100 | 90.7 | 200 | 99.74% | — |
1 | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. DOI: 10.1038/35104644. |
2 | XU Y F, DING T J, SUN D M, et al. Recent advances in electrolytes for potassium-ion batteries[J]. Advanced Functional Materials, 2023, 33(6): 2211290. DOI: 10.1002/adfm.202211290. |
3 | WANG H W, ZHAI D Y, KANG F Y. Solid electrolyte interphase (SEI) in potassium ion batteries[J]. Energy & Environmental Science, 2020, 13(12): 4583-4608. DOI: 10.1039/d0ee01638a. |
4 | HOSAKA T, KUBOTA K, HAMEED A S, et al. Research development on K-ion batteries[J]. Chemical Reviews, 2020, 120(14): 6358-6466. DOI: 10.1021/acs.chemrev.9b00463. |
5 | KOMABA S, ITABASHI T, KIMURA T, et al. Opposite influences of K+ versus Na+ ions as electrolyte additives on graphite electrode performance[J]. Journal of Power Sources, 2005, 146(1/2): 166-170. DOI: 10.1016/j.jpowsour.2005.03.121. |
6 | JIAN Z L, LUO W, JI X L. Carbon electrodes for K-ion batteries[J]. Journal of the American Chemical Society, 2015, 137(36): 11566-11569. DOI: 10.1021/jacs.5b06809. |
7 | LUO W, WAN J Y, OZDEMIR B, et al. Potassium ion batteries with graphitic materials[J]. Nano Letters, 2015, 15(11): 7671-7677. DOI: 10.1021/acs.nanolett.5b03667. |
8 | ZHAO J, ZOU X X, ZHU Y J, et al. Electrochemical intercalation of potassium into graphite[J]. Advanced Functional Materials, 2016, 26(44): 8103-8110. DOI: 10.1002/adfm.201602248. |
9 | FAN L, MA R F, ZHANG Q F, et al. Graphite anode for a potassium-ion battery with unprecedented performance[J]. Angewandte Chemie International Edition, 2019, 58(31): 10500-10505. DOI: 10.1002/anie.201904258. |
10 | HARPER G, SOMMERVILLE R, KENDRICK E, et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 575: 75-86. DOI: 10.1038/s41586-019-1682-5. |
11 | LÜCK J, LATZ A. A double-layer model for describing the effect of solvation and adsorption of ions on electrode surfaces in batteries[J]. ECS Meeting Abstracts, 2015, (2): 193. DOI: 10.1149/ma2015-02/2/193. |
12 | LIU J L, YIN T T, TIAN B B, et al. Unraveling the potassium storage mechanism in graphite foam[J]. Advanced Energy Materials, 2019, 9(22): 1900579. DOI: 10.1002/aenm.201900579. |
13 | WU X, CHEN Y L, XING Z, et al. Advanced carbon-based anodes for potassium-ion batteries[J]. Advanced Energy Materials, 2019, 9(21): 1900343. DOI: 10.1002/aenm.201900343. |
14 | QIN G H, ZHANG Y B, QI Z G, et al. Dynamically reversible gelation of electrolyte for efficient wide-temperature adaptable energy storage[J]. Advanced Functional Materials, 2024: 2316813. DOI: 10.1002/adfm.202316813. |
15 | DU G Y, TAO M L, LIU D Y, et al. Low-operating temperature quasi-solid-state potassium-ion battery based on commercial materials[J]. Journal of Colloid and Interface Science, 2021, 582: 932-939. DOI: 10.1016/j.jcis.2020.08.069. |
16 | LI Q, LIU G, CHENG H R, et al. Low-temperature electrolyte design for lithium-ion batteries: Prospect and challenges[J]. Chemistry, 2021, 27(64): 15842-15865. DOI: 10.1002/chem.202101407. |
17 | MING J, CAO Z, LI Q, et al. Molecular-scale interfacial model for predicting electrode performance in rechargeable batteries[J]. ACS Energy Letters, 2019, 4(7): 1584-1593. DOI: 10.1021/acsenergylett.9b00822. |
18 | QIN L, XIAO N, ZHENG J F, et al. Localized high-concentration electrolytes boost potassium storage in high-loading graphite[J]. Advanced Energy Materials, 2019, 9(44): 1902618. DOI: 10.1002/aenm.201902618. |
19 | LI L, LIU L J, HU Z, et al. Understanding high-rate K+-solvent co-intercalation in natural graphite for potassium-ion batteries[J]. Angewandte Chemie, 2020, 132(31): 13017-13024. DOI: 10.1002/ange.202001966. |
20 | 程浩然, 马征, 郭营军, 等. 影响电池性能的因素: 金属离子溶剂化结构衍生的界面行为还是固体电解质界面膜?[J]. 电化学, 2022, 28(11): 51-73. DOI: 10.13208/j.electrochem.2219012. |
CHENG H R, MA Z, GUO Y J, et al. Which factor dominates battery performance: Metal ion solvation structure-derived interfacial behavior or solid electrolyte interphase layer?[J]. Journal of Electrochemistry, 2022, 28(11): 51-73. DOI: 10.13208/j.electrochem.2219012. | |
21 | LIU S L, MAO J F, ZHANG L, et al. Manipulating the solvation structure of nonflammable electrolyte and interface to enable unprecedented stability of graphite anodes beyond 2 years for safe potassium-ion batteries[J]. Advanced Materials, 2021, 33(1): e2006313. DOI: 10.1002/adma.202006313. |
22 | DIVYA M L, LEE Y S, ARAVINDAN V. Solvent co-intercalation: An emerging mechanism in Li-, Na-, and K-ion capacitors[J]. ACS Energy Letters, 2021, 6(12): 4228-4244. DOI: 10.1021/acsenergylett.1c01801. |
23 | CHENG H R, SUN Q J, LI L L, et al. Emerging era of electrolyte solvation structure and interfacial model in batteries[J]. ACS Energy Letters, 2022, 7(1): 490-513. DOI: 10.1021/acsenergylett.1c02425. |
24 | WANG Y Q, CAO Z, MA Z, et al. Weak solvent-solvent interaction enables high stability of battery electrolyte[J]. ACS Energy Letters, 2023, 8(3): 1477-1484. DOI: 10.1021/acsenergylett.3c00052. |
25 | CAI T, WANG Y Q, ZHAO F, et al. Graphic, quantitation, visualization, standardization, digitization, and intelligence of electrolyte and electrolyte-electrode interface[J]. Advanced Energy Materials, 2024: 2400569. DOI: 10.1002/aenm.202400569. |
26 | CHENG H R, MA Z, LI Q, et al. Design of new chemicals for advanced electrolytes[J]. Science China Chemistry, 2024, 67(5): 1378-1380. DOI: 10.1007/s11426-023-1716-7. |
27 | YU Z L, LIU Q, CHEN C S, et al. Regulating the interfacial chemistry enables fast-kinetics hard carbon anodes for potassium ion batteries[J]. Journal of Power Sources, 2023, 557: 232592. DOI: 10.1016/j.jpowsour.2022.232592. |
28 | HU Y Y, FU H W, GENG Y H, et al. Chloro-functionalized ether-based electrolyte for high-voltage and stable potassium-ion batteries[J]. Angewandte Chemie International Edition, 2024, 63(23): 2403269. DOI: 10.1002/anie.202403269. |
29 | CHENG L W, LAN H, GAO Y, et al. Realizing low-temperature graphite-based rechargeable potassium-ion full battery[J]. Angewandte Chemie International Edition, 2024, 63(7): 2315624. DOI: 10.1002/anie.202315624. |
30 | LIU G, CAO Z, ZHOU L, et al. Additives engineered nonflammable electrolyte for safer potassium ion batteries[J]. Advanced Functional Materials, 2020, 30(43): 2001934. DOI: 10.1002/adfm.202001934. |
31 | NI L, XU G J, LI C C, et al. Electrolyte formulation strategies for potassium-based batteries[J]. Exploration, 2022, 2(2): 20210239. DOI: 10.1002/EXP.20210239. |
32 | LUO K, WANG Z X, MO Y, et al. Potassium selenocyanate (KSeCN) additive enabled stable cathode electrolyte interphase and iron dissolution inhibition toward long-cycling potassium-ion batteries[J]. Advanced Functional Materials, 2024, 34(13): 2311364. DOI: 10.1002/adfm.202311364. |
33 | TANG M Y, DONG S, WANG J W, et al. Low-temperature anode-free potassium metal batteries[J]. Nature Communications, 2023, 14(1): 6006. DOI: 10.1038/s41467-023-41778-6. |
34 | CHEN J C, AN D, WANG S C, et al. Rechargeable potassium-ion full cells operating at -40 ℃[J]. Angewandte Chemie International Edition, 2023, 62(33): e202307122. DOI: 10.1002/anie.202307122. |
35 | KITANI A, FUKUTA T, KODAMA Y, et al. Suppression of decomposition of propylene carbonate at graphite electrodes by the addition of nonionic surfactants[J]. Electrochemistry, 2003, 71(12): 1076-1077. DOI: 10.5796/electrochemistry.71.1076. |
36 | ALVARADO J, SCHROEDER M A, ZHANG M H, et al. A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries[J]. Materials Today, 2018, 21(4): 341-353. DOI: 10.1016/j.mattod.2018.02.005. |
37 | ZHANG J, CAO Z, ZHOU L, et al. Model-based design of graphite-compatible electrolytes in potassium-ion batteries[J]. ACS Energy Letters, 2020, 5(8): 2651-2661. DOI: 10.1021/acsenergylett.0c01401. |
38 | ZHANG J, CAO Z, ZHOU L, et al. Model-based design of stable electrolytes for potassium ion batteries[J]. ACS Energy Letters, 2020, 5(10): 3124-3131. DOI: 10.1021/acsenergylett.0c01634. |
39 | WANG Z X, LUO K, WU J F, et al. Rejuvenating propylene carbonate-based electrolytes by regulating the coordinated structure toward all-climate potassium-ion batteries[J]. Energy & Environmental Science, 2024, 17(1): 274-283. DOI: 10.1039/D3EE03340F. |
40 | LIN R, KE C M, CHEN J E, et al. Asymmetric donor-acceptor molecule-regulated core-shell-solvation electrolyte for high-voltage aqueous batteries[J]. Joule, 2022, 6(2): 399-417. DOI: 10.1016/j.joule.2022.01.002. |
41 | NIAN Q S, WANG J Y, LIU S, et al. Aqueous batteries operated at -50 ℃[J]. Angewandte Chemie International Edition, 2019, 58(47): 16994-16999. DOI: 10.1002/anie.201908913. |
42 | WEI J, ZHANG P B, LIU Y Z, et al. Wide-voltage-window amphiphilic supramolecule excluded-volume electrolytes for ultra-durable full-cell aqueous potassium-Ion batteries[J]. Chemical Engineering Journal, 2023, 459: 141623. DOI: 10.1016/j.cej.2023.141623. |
43 | JIANG L W, LU Y C. Building a long-lifespan aqueous K-ion battery operating at –35 ℃[J]. ACS Energy Letters, 2024, 9(3): 985-991. DOI: 10.1021/acsenergylett.4c00098. |
44 | MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2(4): 16103. DOI: 10.1038/natrevmats.2016.103. |
45 | XU L, TANG S, CHENG Y, et al. Interfaces in solid-state lithium batteries[J]. Joule, 2018, 2(10): 1991-2015. DOI: 10.1016/j.joule.2018.07.009. |
46 | XU S J, SUN Z H, SUN C G, et al. Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature[J]. Advanced Functional Materials, 2020, 30(51): 2007172. DOI: 10.1002/adfm.202007172. |
47 | XU S J, XU R G, YU T, et al. Decoupling of ion pairing and ion conduction in ultrahigh-concentration electrolytes enables wide-temperature solid-state batteries[J]. Energy & Environmental Science, 2022, 15(8): 3379-3387. DOI: 10.1039/D2EE01053D. |
48 | ZHAO T, ZHENG X Y, WANG D H, et al. A quasi-solid-state polyether electrolyte for low-temperature sodium metal batteries[J]. Advanced Functional Materials, 2023, 33(48): 2304928. DOI: 10.1002/adfm.202304928. |
[1] | 周洪, 辛竹琳, 付豪, 张强, 魏凤. 基于专利数据挖掘的固态锂电池关键材料分析[J]. 储能科学与技术, 2024, 13(7): 2386-2398. |
[2] | 李想, 刘德重, 袁开, 陈大鹏. 用于低温锂金属电池的固态电解质技术研究进展[J]. 储能科学与技术, 2024, 13(7): 2327-2347. |
[3] | 王美龙, 薛煜瑞, 胡文茜, 杜可遇, 孙瑞涛, 张彬, 尤雅. 低温磷酸铁锂电池用全醚高熵电解液的设计研究[J]. 储能科学与技术, 2024, 13(7): 2131-2140. |
[4] | 徐雄文, 莫英, 周望, 姚环东, 洪娟, 雷化, 涂健, 刘继磊. 硬碳动力学特性对钠离子电池低温性能的影响及机制[J]. 储能科学与技术, 2024, 13(7): 2141-2150. |
[5] | 王文涛, 魏一凡, 黄鲲, 吕国伟, 张思瑶, 唐昕雅, 陈泽彦, 林清源, 母志鹏, 王昆桦, 才华, 陈军. 低温锂离子电池测试标准及研究进展[J]. 储能科学与技术, 2024, 13(7): 2300-2307. |
[6] | 林炜琦, 卢巧瑜, 陈宇鸿, 邱麟媛, 季钰榕, 管联玉, 丁翔. 低温钠离子电池正极材料研究进展[J]. 储能科学与技术, 2024, 13(7): 2348-2360. |
[7] | 汪书苹, 杨献坤, 李昌豪, 曾子琪, 程宜风, 谢佳. 乙基膦酸二乙酯基阻燃宽温域电解液在锂离子电池中的应用[J]. 储能科学与技术, 2024, 13(7): 2161-2170. |
[8] | 卢俊杰, 彭丹, 倪文静, 杨媛, 汪靖伦. 锂/氟化碳电池电解液的研究进展[J]. 储能科学与技术, 2024, 13(5): 1487-1495. |
[9] | 武美玲, 牛磊, 李世友, 赵冬妮. 正极预锂化添加剂用于锂离子电池的研究进展[J]. 储能科学与技术, 2024, 13(3): 759-769. |
[10] | 孙明明. 有机无机复合锂离子电池固态电解质专利分析[J]. 储能科学与技术, 2024, 13(3): 1096-1105. |
[11] | 梁宏毅, 陈锋, 甘友毅, 邵丹. 动力锂电池三元正极低温性能研究[J]. 储能科学与技术, 2024, 13(1): 293-298. |
[12] | 戴雪娇, 闫婕, 王管, 董浩天, 蒋丹枫, 魏泽威, 孟凡星, 刘松涛, 张海涛. 铌基低温电池关键材料研究进展[J]. 储能科学与技术, 2024, 13(1): 311-324. |
[13] | 李枫, 程晓斌, 罗锦达, 姚宏斌. 金属氯化物固态电解质及其全固态电池研究现状与展望[J]. 储能科学与技术, 2024, 13(1): 193-211. |
[14] | 赵争光, 陈振营, 翟光群, 张希, 庄小东. Sc/O掺杂硫化物固态电解质的制备及全固态电池性能[J]. 储能科学与技术, 2023, 12(8): 2412-2423. |
[15] | 刘欢, 彭娜, 高清雯, 李文鹏, 杨志荣, 王景涛. 冠醚掺杂的聚合物固态电解质对全固态锂电池性能的影响[J]. 储能科学与技术, 2023, 12(8): 2401-2411. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||