1 |
朱晓庆, 王震坡, WANG Hsin, 等. 锂离子动力电池热失控与安全管理研究综述[J]. 机械工程学报, 2020, 56(14): 91-118. DOI: 10.3901/JME.2020.14.091.
|
|
ZHU X Q, WANG Z P, WANG Hsin, et al. Review of thermal runaway and safety management for lithium-ion traction batteries in electric vehicles[J]. Journal of Mechanical Engineering, 2020, 56(14): 91-118. DOI: 10.3901/JME.2020.14.091.
|
2 |
CHEN K, LIAO Q, LIU K, et al. Capacity degradation prediction of lithium-ion battery based on artificial bee colony and multi-kernel support vector regression[J]. Journal of Energy Storage, 2023, 72: 108160. DOI: 10.1016/j.est.2023.108160.
|
3 |
于志雨. 基于多维特征提取的电池剩余使用寿命预测[D]. 哈尔滨: 哈尔滨工业大学, 2022. DOI: 10.27061/d.cnki.ghgdu.2022.000702.
|
|
YU Z Y. Prediction of battery remaining service life based on multi-dimensional feature extraction[D]. Harbin: Harbin Institute of Technology, 2022. DOI: 10.27061/d.cnki.ghgdu.2022.000702.
|
4 |
朱洪涛. 基于模型与数据驱动融合的锂电池寿命预测算法研究[D]. 成都: 电子科技大学, 2022. DOI: 10.27005/d.cnki.gdzku.2022. 001795.
|
|
ZHU H T. Research on lithium battery life prediction algorithm based on model and data-driven fusion[D]. Chengdu: University of Electronic Science and Technology of China, 2022. DOI: 10.27005/d.cnki.gdzku.2022.001795.
|
5 |
李晋, 王青松, 孔得朋, 等. 锂电池储能安全评价研究进展[J]. 储能科学与技术, 2023, 12(7): 2282-2301. DOI: 10.19799/j.cnki. 2095-4239.2023.0252.
|
|
LI J, WANG Q S, KONG D P, et al. Research progress on the safety assessment of lithium-ion battery energy storage[J]. Energy Storage Science and Technology, 2023, 12(7): 2282-2301. DOI: 10.19799/j.cnki.2095-4239.2023.0252.
|
6 |
刘泓成. 基于改进神经网络的锂电池剩余使用寿命预测研究[D]. 长春: 吉林大学, 2021. DOI: 10.27162/d.cnki.gjlin.2021.004960.
|
|
LIU H C. Research on prediction of residual service life of lithium battery based on improved neural network[D]. Changchun: Jilin University, 2021. DOI: 10.27162/d.cnki.gjlin.2021.004960.
|
7 |
HE W, WILLIARD N, OSTERMAN M, et al. Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method[J]. Journal of Power Sources, 2011, 196(23): 10314-10321. DOI: 10.1016/j.jpowsour.2011.08.040.
|
8 |
刘若桐, 李建林, 吕喆, 等. 退役动力电池应用潜力分析[J]. 电气技术, 2021, 22(8): 1-9. DOI: 10.3969/j.issn.1673-3800.2021.08.001.
|
|
LIU R T, LI J L, LYU Z, et al. Application potential analysis of decommissioned power batteries[J]. Electrical Engineering, 2021, 22(8): 1-9. DOI: 10.3969/j.issn.1673-3800.2021.08.001.
|
9 |
姜久春, 高洋, 张彩萍, 等. 电动汽车锂离子动力电池健康状态在线诊断方法[J]. 机械工程学报, 2019, 55(20): 60-72, 84. DOI: 10.3901/JME.2019.20.060.
|
|
JIANG J C, GAO Y, ZHANG C P, et al. Online diagnostic method for health status of lithium-ion battery in electric vehicle[J]. Journal of Mechanical Engineering, 2019, 55(20): 60-72, 84. DOI: 10.3901/JME.2019.20.060.
|
10 |
段文献. 锂电池状态估计与剩余使用寿命预测的研究[D]. 长春: 吉林大学, 2023. DOI: 10.27162/d.cnki.gjlin.2023.007572.
|
|
DUAN W X. Research on state estimation and residual life prediction of lithium-ion battery[D]. Changchun: Jilin University, 2023. DOI: 10.27162/d.cnki.gjlin.2023.007572.
|
11 |
卢婷, 杨文强. 锂电池全生命周期内评估参数及评估方法综述[J]. 储能科学与技术, 2020, 9(3): 657-669. DOI: 10.19799/j.cnki.2095-4239.2019.0263.
|
|
LU T, YANG W Q. Review of evaluation parameters and methods of lithium batteries throughout its life cycle[J]. Energy Storage Science and Technology, 2020, 9(3): 657-669. DOI: 10.19799/j.cnki.2095-4239.2019.0263.
|
12 |
杨杰, 王婷, 杜春雨, 等. 锂电池模型研究综述[J]. 储能科学与技术, 2019, 8(1): 58-64. DOI: 10.12028/j.issn.2095-4239.2018.0143.
|
|
YANG J, WANG T, DU C Y, et al. Overview of the modeling of lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(1): 58-64. DOI: 10.12028/j.issn.2095-4239.2018.0143.
|
13 |
钱广俊, 韩雪冰, 卢兰光, 等. 锂电池系统均衡策略研究进展[J]. 机械工程学报, 2022, 58(24): 145-162. DOI: 10.3901/JME.2022. 24.145.
|
|
QIAN G J, HAN X B, LU L G, et al. Advances in lithium-ion battery system equalization strategy research[J]. Journal of Mechanical Engineering, 2022, 58(24): 145-162. DOI: 10.3901/JME.2022.24.145.
|
14 |
顾菊平, 蒋凌, 张新松, 等. 基于特征提取的锂电池健康状态评估及影响因素分析[J]. 电工技术学报, 2023, 38(19): 5330-5342. DOI: 10.19595/j.cnki.1000-6753.tces.231085.
|
|
GU J P, JIANG L, ZHANG X S, et al. Estimation and influencing factor analysis of lithium-ion batteries state of health based on features extraction[J]. Transactions of China Electrotechnical Society, 2023, 38(19): 5330-5342. DOI: 10.19595/j.cnki.1000-6753.tces.231085.
|
15 |
梁海峰, 袁芃, 高亚静. 基于CNN-Bi-LSTM网络的锂电池剩余使用寿命预测[J]. 电力自动化设备, 2021, 41(10): 213-219. DOI: 10.16081/j.epae.202110030.
|
|
LIANG H F, YUAN P, GAO Y J. Remaining useful life prediction of lithium-ion battery based on CNN-Bi-LSTM network[J]. Electric Power Automation Equipment, 2021, 41(10): 213-219. DOI: 10.16081/j.epae.202110030.
|
16 |
薛瑾. 锂电池健康状态估计及剩余使用寿命预测研究[D]. 长沙: 湖南大学, 2022. DOI: 10.27135/d.cnki.ghudu.2022.001885.
|
|
XUE J. Research on health state estimation and remaining service life prediction of lithium battery[D]. Changsha: Hunan University, 2022. DOI: 10.27135/d.cnki.ghudu.2022.001885.
|
17 |
WU J, ZHANG C B, CHEN Z H. An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks[J]. Applied Energy, 2016, 173: 134-140. DOI: 10.1016/j.apenergy.2016.04.057.
|
18 |
MA G J, ZHANG Y, CHENG C, et al. Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network[J]. Applied Energy, 2019, 253: 113626. DOI: 10.1016/j.apenergy.2019.113626.
|
19 |
ZHANG W, LI X, LI X. Deep learning-based prognostic approach for lithium-ion batteries with adaptive time-series prediction and on-line validation[J]. Measurement, 2020, 164: 108052. DOI: 10.1016/j.measurement.2020.108052.
|
20 |
ECKMANN J P, KAMPHORST S O, RUELLE D. Recurrence plots of dynamical systems[M]// World Scientific Series on Nonlinear Science Series A: World Scientific, 1995: 441-445. DOI: 10.1142/9789812833709_0030.
|
21 |
MARWAN N, CARMEN ROMANO M, THIEL M, et al. Recurrence plots for the analysis of complex systems[J]. Physics Reports, 2007, 438(5/6): 237-329. DOI: 10.1016/j.physrep.2006.11.001.
|
22 |
ZAHANGIR ALOM M, TAHA T M, YAKOPCIC C, et al. The history began from AlexNet: A comprehensive survey on deep learning approaches[J]. ArXiv e-Prints, 2018: arXiv: 1803.01164. DOI: 10.48550/arXiv.1803.01164.
|
23 |
ZOU W H, LU Z Q, HU Z Y, et al. Remaining useful life estimation of bearing using deep multiscale window-based transformer[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3514211. DOI: 10.1109/TIM.2023.3268453.
|
24 |
LU Z Q, LIANG L Y, ZHU J, et al. Rotating machinery fault diagnosis under multiple working conditions via a time-series transformer enhanced by convolutional neural network[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3533611. DOI: 10.1109/TIM.2023.3318707.
|
25 |
CHRISTOPH B. Diagnosis and prognosis of degradation in lithium-ion batteries[D]. Oxford, South East England, UK: University of Oxford, 2017
|
26 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Advances in neural information processing systems, 2017: 5998-6008.
|
27 |
YAO D C, LI B Y, LIU H C, et al. Remaining useful life prediction of roller bearings based on improved 1D-CNN and simple recurrent unit[J]. Measurement, 2021, 175: 109166. DOI: 10.1016/j.measurement.2021.109166.
|