1 |
姜竹, 邹博杨, 丛琳, 等. 储热技术研究进展与展望[J]. 储能科学与技术, 2022, 11(9): 2746-2771. DOI: 10.19799/j.cnki.2095-4239. 2021.0538.
|
|
JIANG Z, ZOU B Y, CONG L, et al. Recent progress and outlook of thermal energy storage technologies[J]. Energy Storage Science and Technology, 2022, 11(9): 2746-2771. DOI: 10.19799/j.cnki.2095-4239.2021.0538.
|
2 |
ORÓ E, DE GRACIA A, CASTELL A, et al. Review on phase change materials (PCMs) for cold thermal energy storage applications[J]. Applied Energy, 2012, 99: 513-533. DOI: 10.1016/j.apenergy.2012.03.058.
|
3 |
陈颖, 姜庆辉, 辛集武, 等. 相变储能材料及其应用研究进展[J]. 材料工程, 2019, 47(7): 1-10. DOI: 10.11868/j.issn.1001-4381. 2018. 000876.
|
|
CHEN Y, JIANG Q H, XIN J W, et al. Research status and application of phase change materials[J]. Journal of Materials Engineering, 2019, 47(7): 1-10. DOI: 10.11868/j.issn.1001-4381. 2018.000876.
|
4 |
LI Z, WU Z G. Numerical study on the thermal behavior of phase change materials (PCMs) embedded in porous metal matrix[J]. Solar Energy, 2014, 99: 172-184. DOI: 10.1016/j.solener.2013.11.017.
|
5 |
HOSSEINI A, BANAKAR A, GORJIAN S, et al. Experimental and numerical investigation of the melting behavior of a phase change material in a horizontal latent heat accumulator with longitudinal and annular fins[J]. Journal of Energy Storage, 2024, 82: 110563. DOI: 10.1016/j.est.2024.110563.
|
6 |
BIAN Z, HOU F, CHEN J Q, et al. Numerical analysis on the effect of graded porosity in closed-cell metal foams/PCM composites[J]. Case Studies in Thermal Engineering, 2024, 55: 104145. DOI: 10.1016/j.csite.2024.104145.
|
7 |
PENG W, SADAGHIANI O K. Thermal function improvement of phase-change material (PCM) using alumina nanoparticles in a circular-rectangular cavity using Lattice Boltzmann method[J]. Journal of Energy Storage, 2021, 37: 102493. DOI: 10.1016/j.est.2021.102493.
|
8 |
GHAHREMANNEZHAD A, XU H J, SALIMPOUR M R, et al. Thermal performance analysis of phase change materials (PCMs) embedded in gradient porous metal foams[J]. Applied Thermal Engineering, 2020, 179: 115731. DOI: 10.1016/j. applthermaleng. 2020.115731.
|
9 |
FENG D L, NAN J F, FENG Y H, et al. Numerical investigation on improving the heat storage and transfer performance of ceramic/D-mannitol composite phase change materials by bionic graded pores and nanoparticle additives[J]. International Journal of Heat and Mass Transfer, 2021, 179: 121748. DOI: 10.1016/j. ijheatmasstransfer. 2021.121748.
|
10 |
FENG J W, FU J Z, YAO X H, et al. Triply periodic minimal surface (TPMS) porous structures: From multi-scale design, precise additive manufacturing to multidisciplinary applications[J]. International Journal of Extreme Manufacturing, 2022, 4(2): 022001. DOI: 10.1088/2631-7990/ac5be6.
|
11 |
ZHANG J F, CHEN X H, SUN Y X, et al. Design of a biomimetic graded TPMS scaffold with quantitatively adjustable pore size[J]. Materials & Design, 2022, 218: 110665. DOI: 10.1016/j. matdes. 2022.110665.
|
12 |
ZHANG X Y, YAN X C, FANG G, et al. Biomechanical influence of structural variation strategies on functionally graded scaffolds constructed with triply periodic minimal surface[J]. Additive Manufacturing, 2020, 32: 101015. DOI: 10.1016/j.addma.2019.101015.
|
13 |
XU D, LIN M. Design controllable TPMS structures for solar thermal applications: A pore-scale vs. volume-averaged modeling approach[J]. International Journal of Heat and Mass Transfer, 2023, 201: 123625. DOI: 10.1016/j.ijheatmasstransfer.2022.123625.
|
14 |
QURESHI Z A, ADDIN BURHAN AL-OMARI S, ELNAJJAR E, et al. On the effect of porosity and functional grading of 3D printable triply periodic minimal surface (TPMS) based architected lattices embedded with a phase change material[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122111. DOI: 10.1016/j.ijheatmasstransfer.2021.122111.
|
15 |
BROUMAND M, SON J, PYO Y, et al. TPMS-based transpiration cooling for film cooling enhancement[J]. International Journal of Heat and Mass Transfer, 2024, 231: 125824. DOI: 10.1016/j.ijheatmasstransfer.2024.125824.
|
16 |
ZHANG T, ZHANG K F, LIU F, et al. Analysis of thermal storage behavior of composite phase change materials embedded with gradient-designed TPMS thermal conductivity enhancers: A numerical and experimental study[J]. Applied Energy, 2024, 358: 122630. DOI: 10.1016/j.apenergy.2024.122630.
|
17 |
WANG J H, CHEN K, ZENG M, et al. Investigation on flow and heat transfer in various channels based on triply periodic minimal surfaces (TPMS)[J]. Energy Conversion and Management, 2023, 283: 116955. DOI: 10.1016/j.enconman.2023.116955.
|
18 |
随立言. 基于LBM含复杂骨架固液相变传热特性研究[D]. 济南: 山东建筑大学, 2023. DOI: 10.27273/d.cnki.gsajc.2023.000168.
|
|
SUI L Y. Study on heat transfer characteristics of solid-liquid phase change with complex skeleton based on LBM[D]. Jinan: Shandong Jianzhu University, 2023. DOI: 10.27273/d.cnki. gsajc. 2023.000168.
|
19 |
LIU Z Q, GONG H, GAO J Z, et al. Bio-inspired design, mechanical and mass-transport characterizations of orthotropic TPMS-based scaffold[J]. Composite Structures, 2023, 321: 117256. DOI: 10.1016/j.compstruct.2023.117256.
|
20 |
CHEN B M, SONG L Q, GAO K K, et al. Two zone model for mushy region of solid-liquid phase change based on lattice Boltzmann method[J]. International Communications in Heat and Mass Transfer, 2018, 98: 1-12. DOI: 10.1016/j.icheatmasstransfer.2018.05.021.
|
21 |
VOLLER V R, PRAKASH C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1719. DOI: 10.1016/0017-9310(87)90317-6.
|
22 |
QIAN Y H, ZHOU Y. Complete Galilean-invariant lattice BGK models for the Navier-Stokes equation[J]. Europhysics Letters (EPL), 1998, 42(4): 359-364. DOI: 10.1209/epl/i1998-00255-3.
|
23 |
JANY P, BEJAN A. Scaling theory of melting with natural convection in an enclosure[J]. International Journal of Heat and Mass Transfer, 1988, 31(6): 1221-1235. DOI: 10.1016/0017-9310(88)90065-8.
|
24 |
HOUSE J M, BECKERMANN C, SMITH T F. Effect of a centered conducting body on natural convection heat transfer in an enclosure[J]. Numerical Heat Transfer, Part A: Applications, 1990, 18(2): 213-225. DOI: 10.1080/10407789008944791.
|
25 |
YOON H S, JUNG J H, LEE H S, et al. Effect of thermal boundary condition of an inner cube on three-dimensional natural convection in a cubical[J]. Journal of Mechanical Science and Technology, 2015, 29(10): 4527-4543. DOI: 10.1007/s12206-015-0952-x.
|