储能科学与技术 ›› 2024, Vol. 13 ›› Issue (12): 4319-4329.doi: 10.19799/j.cnki.2095-4239.2024.0554

• 热化学储能专刊 • 上一篇    下一篇

含各向异性TPMS骨架复合材料相变传热特性研究

李鸿臣(), 陈宝明(), 朱彭真, 仲崇龙, 马超富   

  1. 山东建筑大学热能工程学院,山东 济南 250101
  • 收稿日期:2024-06-19 修回日期:2024-07-23 出版日期:2024-12-28 发布日期:2024-12-23
  • 通讯作者: 陈宝明 E-mail:2301377915@qq.com;chenbm@sdjzu.edu.cn
  • 作者简介:李鸿臣(1999—),男,硕士研究生,研究方向为多孔介质相变传热,E-mail:2301377915@qq.com
  • 基金资助:
    国家自然科学基金项目(51976111)

Study on phase-change heat transfer characteristics of anisotropic TPMS skeleton composite materials

Hongchen LI(), Baoming CHEN(), Pengzhen ZHU, Chonglong ZHONG, Chaofu MA   

  1. School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China
  • Received:2024-06-19 Revised:2024-07-23 Online:2024-12-28 Published:2024-12-23
  • Contact: Baoming CHEN E-mail:2301377915@qq.com;chenbm@sdjzu.edu.cn

摘要:

相变材料作为绿色环保的储能材料,被广泛应用于储热领域,但其导热性能较差,通常添加金属骨架以提高相变材料的储热效率。为探究骨架的各向异性对多孔介质复合材料储热相变过程的影响,利用仿生效果较好的三周期极小曲面法(TPMS)建立了Gyroid型骨架和各向异性Gyroid型骨架与相变材料构成复合材料,并将3种不同方向的各向异性Gyroid型骨架与Gyroid型骨架进行比较,基于格子Boltzmann方法,在孔隙尺度下,研究了4种工况的固液相变过程,结果表明:在特定朝向方向的各向异性Gyroid型骨架较Gyroid型骨架强化相变材料换热能力更强,其不仅增强了骨架的导热性能,对腔体内的自然对流抑制作用也更小。各向异性Gyroid型骨架的工况2较Gyroid型骨架熔化时间缩短了14%,腔体内升温速度更快,在Fo=0.06时,截线处高于相变终止温度的区域较Gyroid型骨架多约16%,对流体流动的抑制作用更小,在取定截线处的速度峰值较Gyroid型骨架高13.5%。本研究构造的各向异性Gyroid型骨架复合材料,在不改变孔隙率的条件下,增强了相变复合材料的储热速率,为TPMS骨架设计提供了理论依据。

关键词: 三周期最小曲面, 固液相变, 格子Boltzmann方法, 传热, 数值模拟

Abstract:

Phase-change materials (PCMs) are environmentally friendly energy storage materials extensively used in thermal storage. However, their thermal conductivity is poor, and metal skeletons are usually added to improve the thermal storage efficiency of PCMs. To explore the influence of the anisotropy of the skeleton on the phase-change process of porous medium-composite materials during thermal storage, the triply periodic minimal surface (TPMS) method with good biomimetic effect is used to establish the Gyroid skeleton and anisotropic Gyroid skeleton composite materials with PCMs. The anisotropic Gyroid skeletons in three directions and the Gyroid skeleton are compared. Based on the lattice Boltzmann method, the solid-liquid phase-change process of four operating conditions is studied at the pore scale. The results show that the anisotropic Gyroid skeleton in a specific orientation enhances the heat exchange capacity of PCMs more than the Gyroid skeleton. It improves the thermal conductivity of the framework and has a smaller inhibitory effect on the natural convection within the cavity. The melting time of operating condition 2 of the anisotropic Gyroid skeleton is 14% shorter than that of the Gyroid skeleton. The temperature increase rate within the cavity is faster. At Fo=0.06, the area above the phase-change termination temperature at the cut line is approximately 16% more than that of the Gyroid skeleton, the inhibition effect on the fluid flow is smaller, and the peak velocity at the designated cut line is 13.5% higher than that of the Gyroid skeleton. The anisotropic Gyroid skeleton composite material constructed in this study enhances the heat storage rate of composite PCMs without changing the porosity, providing a theoretical basis for designing the TPMS skeleton.

Key words: triply periodic minimal surface, solid-liquid phase change, lattice Boltzmann method, heat transfer, numerical simulation

中图分类号: