储能科学与技术 ›› 2024, Vol. 13 ›› Issue (12): 4310-4318.doi: 10.19799/j.cnki.2095-4239.2024.0931

• 热化学储能专刊 • 上一篇    下一篇

Y2O3/ZrO2 共同负载铜钙复合材料的制备及其热化学储能特性

汤贺丹(), 叶涵, 张友进, 沈睿, 卢文中, 陈健(), 李友势, 李铭迪()   

  1. 常熟理工学院汽车工程学院,江苏 常熟 215500
  • 收稿日期:2024-10-08 修回日期:2024-10-20 出版日期:2024-12-28 发布日期:2024-12-23
  • 通讯作者: 陈健,李铭迪 E-mail:14752226811@163.com;202100119@cslg.edu.cn;lmd-fj@163.com
  • 作者简介:汤贺丹(2004—),男,本科,研究方向为热化学储能,E-mail:14752226811@163.com
  • 基金资助:
    国家自然科学基金青年科学基金项目(52206230);江苏省高等学校自然科学研究面上项目(22KJB480001)

Investigation on synthesis of Y2O3/ZrO2 co-stabilized Cu/Ca composites and their thermochemical energy storage properties

Hedan TANG(), Han YE, Youjin ZHANG, Rui SHEN, Wenzhong LU, Jian CHEN(), Youshi LI, Mingdi LI()   

  1. School of Automotive Engineering, Changshu Institute of Technology, Suzhou 215500, Jiangsu, China
  • Received:2024-10-08 Revised:2024-10-20 Online:2024-12-28 Published:2024-12-23
  • Contact: Jian CHEN, Mingdi LI E-mail:14752226811@163.com;202100119@cslg.edu.cn;lmd-fj@163.com

摘要:

铜钙联合循环热化学储能工艺是一种新型的氢能存储途径,能够有效解决电力过剩的消纳问题。然而,铜钙复合材料的碳酸化性能随着循环次数增加而显著衰退,限制了其实际应用。为了解决这一问题,本工作采用了载体改性法来提升铜钙复合材料的性能。首先,采用Pechini法制备了负载不同载体的铜钙复合材料,并在三床管式炉反应器中评估其反应性能。实验结果表明,负载载体的铜钙复合材料在10次循环中表现出优异的氧化性能,氧化率始终保持在90%以上。与CeO2和MgO相比,添加Y2O3显著提高了铜钙复合材料的碳酸化转化率。5Y-Cu-Ca(Y2O3/CaO/CuO摩尔比为5∶47.5∶47.5)的初始碳酸化转化率为74.6%,经过10次循环后降至54.1%。为进一步提升Y2O3负载铜钙复合材料的碳酸化性能,采用双元载体负载策略,将ZrO2作为第二载体与Y2O3共同负载在铜钙复合材料上。最佳性能的Y2O3/ZrO2负载铜钙复合材料(Y2O3与ZrO2摩尔比为2∶1)的初始碳酸化转化率为81.6%,在10次循环后碳酸化转化率仅降至70.5%。综上所述,本工作制备的铜钙复合材料对铜钙联合循环热化学储能工艺的实际应用具有重要意义。

关键词: 储能, 化学反应, 化学链, 载体

Abstract:

Cu/Ca-based thermochemical energy storage presents a novel hydrogen storage method that effectively addresses excess power consumption. However, the effectiveness of Cu/Ca composites in carbonation decreases significantly after multiple cycles, limiting their practical use. To address this issue, we employed a stabilizer modification method to improve the performance of Cu/Ca composites. First, Cu/Ca composites were prepared using the Pechini method and stabilized with different stabilizers, then evaluated in a triple-packed-bed reactor. Experimental results showed that composites modified with stabilizers maintained excellent oxidation properties over 10 cycles, with oxidation conversions consistently above 90%. Among the stabilizers tested, Y2O3 significantly improved the carbonation conversion of the composites compared to CeO2 and MgO. Specifically, the 5Y-Cu-Ca composite, with a Y2O3/CaO/CuO molar ratio of 5∶47.5∶47.5, displayed an initial carbonation conversion of 74.6%, which decreased to 54.1% after 10 cycles. To further improve the carbonation performance of Y2O3-stabilized Cu/Ca composites, we adopted a dual-stabilization strategy by incorporating ZrO2 as a second carrier and co-doping it with Y2O3. The most effective Y2O3/ZrO2-stabilized Cu/Ca composites, with a molar ratio of 2∶1, achieved an initial carbonation conversion of 81.6%, dropping to 70.5% after 10 cycles, retaining 86% of its initial activity. In summary, the Cu/Ca composites developed in this study hold great potential for the practical application of Cu/Ca-based thermochemical energy storage technology.

Key words: energy storage, chemical reaction, chemical looping, stabilizer

中图分类号: