1 |
王嘉, 富志生, 杨新龙. "双碳"目标下发展新能源风电光伏用钢的思考[J/OL]. 金属世界, 1-6 [2024-11-06]. DOI: 10.3969/j.issn.1000-6826.2023.05.0602.
|
|
WANG J, FU Z S, YANG X L. Thoughts on the development of new energy wind power and photovoltaic steel under the carbon peaking and carbon neutrality goals[J/OL]. Metal World, 1-6 [2024-11-06]. DOI: 10.3969/j.issn.1000-6826.2023.05.0602.
|
2 |
王艺强, 刘录强, 张志成, 等. 化学储氢介质实现"西氢东送"的可行性研究[J]. 储能科学与技术, 2024, 13(3): 1050-1058. DOI: 10.19799/j.cnki.2095-4239.2023.0486.
|
|
WANG Y Q, LIU L Q, ZHANG Z C, et al. Feasibility of "West-to-East Hydrogen Transmission" through chemical hydrogen storage media[J]. Energy Storage Science and Technology, 2024, 13(3): 1050-1058. DOI: 10.19799/j.cnki.2095- 4239. 2023. 0486.
|
3 |
邢承治, 赵明, 尚超, 等. 有机液体载氢储运技术研究进展及应用场景[J]. 储能科学与技术, 2024, 13(2): 643-651. DOI: 10.19799/j.cnki.2095-4239.2023.0523.
|
|
XING C Z, ZHAO M, SHANG C, et al. Research progress and application scenarios of storage and transportation technology with liquid organic hydrogen carrier[J]. Energy Storage Science and Technology, 2024, 13(2): 643-651. DOI: 10.19799/j.cnki.2095-4239.2023.0523.
|
4 |
万燕鸣, 熊亚林, 王雪颖. 全球主要国家氢能发展战略分析[J]. 储能科学与技术, 2022, 11(10): 3401-3410. DOI: 10.19799/j.cnki.2095-4239.2022.0132.
|
|
WAN Y M, XIONG Y L, WANG X Y. Strategic analysis of hydrogen energy development in major countries[J]. Energy Storage Science and Technology, 2022, 11(10): 3401-3410. DOI: 10.19799/j.cnki.2095-4239.2022.0132.
|
5 |
刘玮, 万燕鸣, 熊亚林, 等. "双碳"目标下我国低碳清洁氢能进展与展望[J]. 储能科学与技术, 2022, 11(2): 635-642. DOI: 10.19799/j.cnki.2095-4239.2021.0385.
|
|
LIU W, WAN Y M, XIONG Y L, et al. Outlook of low carbon and clean hydrogen in China under the goal of "carbon peak and neutrality"[J]. Energy Storage Science and Technology, 2022, 11(2): 635-642. DOI: 10.19799/j.cnki.2095-4239.2021.0385.
|
6 |
谢欣烁, 杨卫娟, 施伟, 等. 制氢技术的生命周期评价研究进展[J]. 化工进展, 2018, 37(6): 2147-2158. DOI: 10.16085/j.issn.1000-6613.2017-1604.
|
|
XIE X S, YANG W J, SHI W, et al. Life cycle assessment of technologies for hydrogen production — A review[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2147-2158. DOI: 10.16085/j.issn.1000-6613.2017-1604.
|
7 |
李璐伶, 樊栓狮, 陈秋雄, 等. 储氢技术研究现状及展望[J]. 储能科学与技术, 2018, 7(4): 586-594. DOI: 10.12028/j.issn.2095-4239.2018.0062.
|
|
LI L L, FAN S S, CHEN Q X, et al. Hydrogen storage technology: Current status and prospects[J]. Energy Storage Science and Technology, 2018, 7(4): 586-594. DOI: 10.12028/j.issn.2095-4239.2018.0062.
|
8 |
ZHENG J Y, LIU X X, XU P, et al. Development of high pressure gaseous hydrogen storage technologies[J]. International Journal of Hydrogen Energy, 2012, 37(1): 1048-1057. DOI: 10.1016/j.ijhydene.2011.02.125.
|
9 |
孙峰, 彭浩, 凌祥. 中高温热化学反应储能研究进展[J]. 储能科学与技术, 2015, 4(6): 577-584.
|
|
SUN F, PENG H, LING X. Progress in medium to high temperature thermochemical energy storage technologies[J]. Energy Storage Science and Technology, 2015, 4(6): 577-584.
|
10 |
陈健, 李友势, 陆新元, 等. CeO2负载钙铜复合纳米小球的合成及其热化学储能特性[J]. 华南师范大学学报(自然科学版), 2024, 56(2): 55-61.
|
|
CHEN J, LI Y S, LU X Y, et al. Investigation on synthesis of CeO2-stabilized CaO/CuO composite nanospheres and their thermochemical energy storage characteristics[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(2): 55-61.
|
11 |
陈健, 李铭迪, 胡焰彬, 等. 基于钙基吸收剂/载氧体的可再生能源存储利用方法及系统: CN114307585A[P]. 2022-04-12.
|
12 |
MANOVIC V, WU Y H, HE I, et al. Core-in-shell CaO/CuO-based composite for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2011, 50(22): 12384-12391. DOI: 10.1021/ie201427g.
|
13 |
陈健, 李友势, 黄昌强, 等. 钙铜复合吸收剂的一步法合成及其CO2捕集性能[J]. 华南师范大学学报(自然科学版), 2023, 55(5): 1-7. DOI: 10.6054/j.jscnun.2023057.
|
|
CHEN J, LI Y S, HUANG C Q, et al. Investigation on one-step synthesis of CaO/CuO composite pellets and their CO2 capture performance[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(5): 1-7. DOI: 10.6054/j.jscnun.2023057.
|
14 |
陈健, 孙世超, 李铭迪, 等. 钙铜复合吸收剂CO2捕集性能优化研究进展[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 43-52. DOI: 10.6054/j.jscnun.2022043.
|
|
CHEN J, SUN S C, LI M D, et al. The progress in the research on optimizing CO2 capture performance of CaO/CuO composites[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 43-52. DOI: 10.6054/j.jscnun.2022043.
|
15 |
CHEN J, DUAN L B, DONAT F, et al. Self-activated, nanostructured composite for improved CaL-CLC technology[J]. Chemical Engineering Journal, 2018, 351: 1038-1046. DOI: 10.1016/j.cej.2018.06.176.
|
16 |
DONG J, TANG Y J, NZIHOU A, et al. Effect of steam addition during carbonation, calcination or hydration on re-activation of CaO sorbent for CO2 capture[J]. Journal of CO2 Utilization, 2020, 39: 101167. DOI: 10.1016/j.jcou.2020.101167.
|
17 |
QIN C L, YIN J J, LUO C, et al. Enhancing the performance of CaO/CuO based composite for CO2 capture in a combined Ca-Cu chemical looping process[J]. Chemical Engineering Journal, 2013, 228: 75-86. DOI: 10.1016/j.cej.2013.04.115.
|
18 |
KIERZKOWSKA A M, PACCIANI R, MÜLLER C R. CaO-based CO2 sorbents: From fundamentals to the development of new, highly effective materials[J]. ChemSusChem, 2013, 6(7): 1130-1148. DOI: 10.1002/cssc.201300178.
|
19 |
RECIO A, LIEW S, LU D, et al. The effects of thermal treatment and steam addition on integrated CuO/CaO chemical looping combustion for CO2 capture[J]. Technologies, 2016, 4(2): 11. DOI: 10.3390/technologies4020011.
|
20 |
CHEN J, DUAN L B, MA Y X, et al. Recent progress in calcium looping integrated with chemical looping combustion (CaL-CLC) using bifunctional CaO/CuO composites for CO2 capture: A state-of-the-art review[J]. Fuel, 2023, 334: 126630. DOI: 10.1016/j.fuel. 2022.126630.
|
21 |
QIN C L, YIN J J, LIU W Q, et al. Behavior of CaO/CuO based composite in a combined calcium and copper chemical looping process[J]. Industrial & Engineering Chemistry Research, 2012, 51(38): 12274-12281. DOI: 10.1021/ie300677s.
|
22 |
KIERZKOWSKA A M, MÜLLER C R. Sol-gel-derived, calcium-based, copper-functionalised CO2 sorbents for an integrated chemical looping combustion-calcium looping CO2 capture process[J]. ChemPlusChem, 2013, 78(1): 92-100. DOI: 10.1002/cplu.201200232.
|
23 |
CHEN J, HUANG A Q, HUANG C Q, et al. Stabilizer-coated combined Ca/Cu pellets with controllable particle sizes for the Ca/Cu chemical loop[J]. Separation and Purification Technology, 2024, 338: 126535. DOI: 10.1016/j.seppur.2024.126535.
|
24 |
XING S, HAN R, WANG Y, et al. Facile fabrication of aluminum-oxide deposited CuO/CaO composites with enhanced stability and CO2 capture capacity for combined Ca/Cu looping process[J]. Microporous and Mesoporous Materials, 2022, 337: 111923. DOI: 10.1016/j.micromeso.2022.111923.
|
25 |
MA J C, MEI D F, PENG W W, et al. On the high performance of a core-shell structured CaO-CuO/MgO@Al2O3 material in calcium looping integrated with chemical looping combustion (CaL-CLC)[J]. Chemical Engineering Journal, 2019, 368: 504-512. DOI: 10.1016/j.cej. 2019.02.188.
|