储能科学与技术 ›› 2024, Vol. 13 ›› Issue (12): 4299-4309.doi: 10.19799/j.cnki.2095-4239.2024.0851

• 热化学储能专刊 • 上一篇    下一篇

基于MgSO4 的热化学储能特性数值研究

徐书彧(), 王燕()   

  1. 南京工业大学机械与动力工程学院,江苏 南京 211816
  • 收稿日期:2024-09-12 修回日期:2024-09-24 出版日期:2024-12-28 发布日期:2024-12-23
  • 通讯作者: 王燕 E-mail:xushuyu6@163.com;wemma7@gmail.com
  • 作者简介:徐书彧(2000—),男,硕士研究生,研究方向为储热技术,E-mail:xushuyu6@163.com
  • 基金资助:
    江苏省自然科学基金面上项目(BK20201364);江苏省高校自然科学研究重大项目(A类)(18KJA480003)

Numerical study of thermochemical energy storage characteristics of MgSO4

Shuyu XU(), Yan WANG()   

  1. School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
  • Received:2024-09-12 Revised:2024-09-24 Online:2024-12-28 Published:2024-12-23
  • Contact: Yan WANG E-mail:xushuyu6@163.com;wemma7@gmail.com

摘要:

为研究热化学材料MgSO4的储能特性,基于反应动力学,建立二维多孔介质MgSO4·7H2O/MgSO4的储热/放热模型,分析了储热、放热单元内传热传质过程中单元反应速率、温度分布和水蒸气浓度分布,并讨论了入口空气温度(Tin)和入口空气速度(Uin)对单元储热特性和热效率的影响。结果表明,对于储热过程,Tin每增加10 ℃,储热量增加约3.13%,而Uin每增加0.125 m/s,储热量增加约0.97%,Tin的增大使得单元热传递速率加快,水蒸气压力更快达到平衡压力,反应速率也随之增加;Uin的增加,加快了水蒸气的传输速率且增强了单元内的对流换热,强化了其动力学特性,提升了反应速率,导致储热量增加。对于放热过程,单元热效率的变化趋势与储热量相反。Tin每增加2.5 ℃,热效率降低约0.93%;Uin每增加0.1 m/s,热效率降低约0.58%。Tin的增大,提高了反应单元平衡压力,降低了单元反应速率,减弱了放热单元的温升效应;Uin的增加,提高了水蒸气的输送速率和单元内对流换热,单元内的水蒸气压力得到了提升,最终导致反应速率和热效率的降低。因此,本工作为研究MgSO4的热化学储能特性提供了理论依据和参考。

关键词: MgSO4·7H2O, 传热传质, 多孔介质, 热化学储能

Abstract:

A charging/discharging model of a two-dimensional porous medium MgSO4·7H2O/MgSO4 was developed using reaction kinetics to investigate the energy storage characteristics of MgSO4 as a thermochemical material. This study examined the reaction rate, temperature distribution, and water vapor concentration distribution during heat and mass transfer in charging/discharging units. This study also examined the influence of inlet air temperature (Tin) and inlet air velocity (Uin) on unit performance and thermal efficiency. The results indicate that during the charging process, heat storage increases by approximately 3.13% for every 10 ℃ increase in Tin and by approximately 0.97% for every 0.125 m/s increase in Uin. An increase in Tin accelerates the rate of unit heat transfer and enables the water vapor pressure to reach equilibrium faster, subsequently increasing the reaction rate. Similarly, an increase in Uin enhances the water vapor transport rate and improves the convective heat transfer within the unit, thereby enhancing the kinetic properties and increasing the reaction rate, which leads to an increase in the heat storage capacity. Conversely, during the discharge process, the unit thermal efficiency exhibited an inverse relationship with heat storage capacity. The thermal efficiency decreased by approximately 0.93% for every 2.5 ℃ increase in Tin, whereas heat storage decreased by approximately 0.58% for every 0.1 m/s increase in Uin. An increase in Tin increases the equilibrium pressure of the unit and decreases its unit reaction rate, thereby reducing the effect of temperature rise of the unit. Furthermore, an increase in Uin increases the rate of water vapor transport and convective heat transfer of the unit, which subsequently increases the water vapor pressure. Ultimately, the reaction rate and thermal efficiency decreased. This study offers a theoretical foundation and practical reference for understanding the thermochemical energy storage characteristics of MgSO4.

Key words: MgSO4·7H2O, heat and mass transfer, porous medium, thermochemical energy storage

中图分类号: