储能科学与技术 ›› 2024, Vol. 13 ›› Issue (12): 4330-4338.doi: 10.19799/j.cnki.2095-4239.2024.0910

• 热化学储能专刊 • 上一篇    下一篇

基于相变储热的先进高温热泵储能单元的热力学分析

肖振坤1(), 陈珍1, 杨壮2, 戚宏勋1, 闫君3()   

  1. 1.中国电力工程顾问集团有限公司中电储能工程技术研究院,上海 200333
    2.中电智慧储能科技(上海)有限公司,上海 200333
    3.上海交通大学工程热物理研究所,上海 200240
  • 收稿日期:2024-09-29 修回日期:2024-10-17 出版日期:2024-12-28 发布日期:2024-12-23
  • 通讯作者: 闫君 E-mail:zkxiao@cpecc.net;miraclebwh@sjtu.edu.cn
  • 作者简介:肖振坤(1986—),男,硕士,高级工程师,研究方向为压缩空气储能系统集成技术、电化学储能系统集成与优化技术等,E-mail:zkxiao@cpecc.net
  • 基金资助:
    国家重点研发计划(2023YFB4005405);上海市2023年度“科技创新行动计划”自然科学基金项目(23ZR1434500);中国电力工程顾问集团有限公司重大科技专项(DG3-F01-2023)

Thermodynamic analysis of an advanced high-temperature heat pump energy storage unit based on phase-change heat storage

Zhenkun XIAO1(), Zhen CHEN1, Zhuang YANG2, Hongxun QI1, Jun YAN3()   

  1. 1.China Power Engineering Consulting Group Co. , Ltd. , China Power Energy Storage Engineering Technology Research Institute, Shanghai 200333, China
    2.Zhongdian Smart Energy Storage Technology (Shanghai) Co. , Ltd. , Shanghai 200333, China
    3.Institute of Engineering Thermophysics, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2024-09-29 Revised:2024-10-17 Online:2024-12-28 Published:2024-12-23
  • Contact: Jun YAN E-mail:zkxiao@cpecc.net;miraclebwh@sjtu.edu.cn

摘要:

卡诺电池利用热力学循环将电能储存为热能,可灵活结合工业余热,实现冷、热、电的协同供应,从而提高可再生能源的渗透率。在此,本工作探讨了卡诺电池整合基于相变储热的壳管式热能存储的热力学性能,并从传热流体和储能介质之间温度变化、累积存储/释放热量及㶲量等方面研究了其广泛的热力学性能。此外,还对已建立的二维瞬态模型进行了无量纲分析,使结果更具通用性。结果表明,充电过程结束时,对应的出口温度可达0.83。设备的最大功率和平均功率分别可达1860 W和624.7 W。根据热力学第二定律,可以发现沿着流动方向,储存的㶲依次减少,这也是由于大量的㶲被储存在进口的PCM中,在放电时间t*=0.93时,储能单元释放的㶲量接近于0。

关键词: 储能, 相变储热, 数值模拟, 热力学分析

Abstract:

Carnot batteries use thermodynamic cycles to convert and store electrical energy as thermal energy, which can be effectively integrated with industrial waste heat to facilitate a coordinated supply of cooling, heat, and electricity. This approach enhances the integration of renewable energy sources. This study investigates the thermodynamic properties of Carnot batteries, coupled with shell-and-tube thermal energy storage systems based on phase-change heat storage. We thoroughly analyzed the thermodynamic properties of the battery, considering factors such as temperature variations between the heat transfer fluid and the energy storage medium, the cumulative heat storage and release process, and the overall heat capacity. In addition, we performed a dimensionless analysis of the established two-dimensional transient model to improve the generalizability of the results. Results indicate that after the charging cycle, the outlet temperature can reach 0.83. The maximum and average power of the device were calculated as 1860 W and 624.7 W, respectively. Based on the second law of thermodynamics, it can be inferred that the stored exergy decreases sequentially along the flow direction, primarily due to the significant amount of exergy stored in the inlet PCM, with the amount of exergy released by the storage unit approaching 0 at the discharge time, t*=0.93.

Key words: energy storage, phase change heat storage, numerical simulation, thermodynamic analysis

中图分类号: