[1] |
张晓斐. 推动实现"双碳" 目标背景下若干问题的思考研究[J]. 能源与节能, 2022(4): 69-71.
|
|
ZHANG X F. Thinking and research on several issues in context of promoting the realization of "dual carbon" goal[J]. Energy and Energy Conservation, 2022(4): 69-71.
|
[2] |
WANG L H, CUI Z C, KUULUVAINEN J, et al. Does forest industries in China become cleaner?A prospective of embodied carbon emission[J]. Sustainability, 2021, 13(4): 2306. DOI: 10. 3390/su13042306.
|
[3] |
LYU Y Z, GAO H B, YAN K, et al. Carbon peaking strategies for industrial parks: Model development and applications in China[J]. Applied Energy, 2022, 322: 119442. DOI: 10.1016/j.apenergy. 2022.119442.
|
[4] |
杨华磊, 杨敏. 碳达峰碳中和: 中国式现代化的能源转型之路[J]. 经济问题, 2024(3): 1-7. DOI: 10.16011/j.cnki.jjwt.2024.03.011.
|
|
YANG H L, YANG M. Peak carbon emission and carbon neutrality: China's path to energy transition in modernization[J]. On Economic Problems, 2024(3): 1-7. DOI: 10.16011/j.cnki.jjwt. 2024. 03.011.
|
[5] |
龚向前. 迈向可持续能源——能源法生态化变革的法理分析[J]. 中国地质大学学报(社会科学版), 2009, 9(2): 31-36. DOI: 10.16493/j.cnki.42-1627/c.2009.02.007.
|
|
GONG X Q. Studies on the jurisprudence of energy law reform towards sustainable energy[J]. Journal of China University of Geosciences (Social Sciences Edition), 2009, 9(2): 31-36. DOI: 10.16493/j.cnki.42-1627/c.2009.02.007.
|
[6] |
北京大学国家发展研究院能源安全与国家发展研究中心、中国人民大学经济学院能源经济系联合课题组, 王敏. 关于中国风电和光伏发电补贴缺口和大比例弃电问题的研究[J]. 国际经济评论, 2018(4): 67-85.
|
[7] |
JENKINS J D, ZHOU Z, PONCIROLI R, et al. The benefits of nuclear flexibility in power system operations with renewable energy[J]. Applied Energy, 2018, 222: 872-884. DOI: 10.1016/j.apenergy.2018.03.002.
|
[8] |
GARÐARSDÓTTIR S Ó, GÖRANSSON L, NO-RMANN F, et al. Improving the flexibility of coal-fired power generators: Impact on the composition of a cost-optimal electricity system[J]. Applied Energy, 2018, 209: 277-289. DOI: 10.1016/j.apenergy. 2017. 10.085.
|
[9] |
SUN Y, XU C, XIN T T, et al. A comprehensive analysis of a thermal energy storage concept based on low-rank coal pre-drying for reducing the minimum load of coal-fired power plants[J]. Applied Thermal Engineering, 2019, 156: 77-90. DOI: 10. 1016/j.applthermaleng.2019.04.049.
|
[10] |
FU H L, HE Q, SONG J T, et al. Thermodynamic of a novel solar heat storage compressed carbon dioxide energy storage system[J]. Energy Conversion and Management, 2021, 247: 114757. DOI: 10.1016/j.enconman.2021.114757.
|
[11] |
CUI S S, SONG J T, WANG T T, et al. Thermodynamic analysis and efficiency assessment of a novel multi-generation liquid air energy storage system[J]. Energy, 2021, 235: 121322. DOI: 10. 1016/j.energy.2021.121322.
|
[12] |
KANTHARAJ B, GARVEY S, PIMM A. Compressed air energy storage with liquid air capacity extension[J]. Applied Energy, 2015, 157: 152-164. DOI: 10.1016/j.apenergy.2015.07.076.
|
[13] |
ZHANG L, CUI J, ZHANG Y P, et al. Performance analysis of a compressed air energy storage system integrated into a coal-fired power plant[J]. Energy Conversion and Management, 2020, 225: 113446. DOI: 10.1016/j.enconman.2020.113446.
|
[14] |
XU M J, WANG X, WANG Z H, et al. Preliminary design and performance assessment of compressed supercritical carbon dioxide energy storage system[J]. Applied Thermal Engineering, 2021, 183: 116153. DOI: 10.1016/j.applthermaleng.2020.116153.
|
[15] |
HE Q, LIU H, HAO Y P, et al. Thermodynamic analysis of a novel supercritical compressed carbon dioxide energy storage system through advanced exergy analysis[J]. Renewable Energy, 2018, 127: 835-849. DOI: 10.1016/j.renene.2018.05.005.
|
[16] |
杨玉, 黄斌, 孟欣, 等. 基于二氧化碳热力循环的储能研究综述[J]. 热力发电, 2023, 52(6): 12-23. DOI: 10.19666/j.rlfd.202212294.
|
|
YANG Y, HUANG B, MENG X, et al. Research summary on the energy storage technologies based on carbon dioxide thermodynamic cycle[J]. Thermal Power Generation, 2023, 52(6): 12-23. DOI: 10.19666/j.rlfd.202212294.
|
[17] |
郝佳豪, 越云凯, 张家俊, 等. 二氧化碳储能技术研究现状与发展前景[J]. 储能科学与技术, 2022, 11(10): 3285-3296. DOI: 10.19799/j.cnki.2095-4239.2022.0199.
|
|
HAO J H, YUE Y K, ZHANG J J, et al. Research status and development prospect of carbon dioxide energy-storage technology[J]. Energy Storage Science and Technology, 2022, 11(10): 3285-3296. DOI: 10.19799/j.cnki.2095-4239.2022.0199.
|
[18] |
PAN L S, LI B, SHI W X, et al. Optimization of the self-condensing CO2 transcritical power cycle using solar thermal energy[J]. Applied Energy, 2019, 253: 113608. DOI: 10.1016/j.apenergy.2019.113608.
|
[19] |
LIU M M, LIU M, WANG Y, et al. Thermodynamic optimization of coal-fired combined heat and power (CHP) systems integrated with steam ejectors to achieve heat-power decoupling[J]. Energy, 2021, 229: 120707. DOI: 10.1016/j.energy.2021.120707.
|
[20] |
ZHANG X A, ZHANG H, KONG F C, et al. Numerical simulation of blade-type adjustable steam ejector[J]. Applied Thermal Engineering, 2024, 238: 122199. DOI: 10.1016/j.applthermaleng. 2023.122199.
|
[21] |
XU W P, ZHAO P, GOU F F, et al. A combined heating and power system based on compressed carbon dioxide energy storage with carbon capture: Exploring the technical potential[J]. Energy Conversion and Management, 2022, 260: 115610. DOI: 10.1016/j.enconman.2022.115610.
|
[22] |
CAYER E, GALANIS N, DESILETS M, et al. Analysis of a carbon dioxide transcritical power cycle using a low temperature source[J]. Applied Energy, 2009, 86(7/8): 1055-1063. DOI: 10.1016/j.apenergy.2008.09.018.
|
[23] |
TANG B, SUN L, XIE Y H. Comprehensive performance evaluation and optimization of a liquid carbon dioxide energy storage system with heat source[J]. Applied Thermal Engineering, 2022, 215: 118957. DOI: 10.1016/j.applthermaleng. 2022.118957.
|
[24] |
SRIVEERAKUL T, APHORNRATANA S, CHUNNANOND K. Performance prediction of steam ejector using computational fluid dynamics: Part 1. Validation of the CFD results[J]. International Journal of Thermal Sciences, 2007, 46(8): 812-822. DOI: 10. 1016/j.ijthermalsci.2006.10.014.
|