[1] |
樊亚平, 晏莉琴, 简德超, 等. 锂离子电池失效中析锂现象的原位检测方法综述[J]. 储能科学与技术, 2019, 8(6): 1040-1049. DOI: 10.12028/j.issn.2095-4239.2019.0115.
|
|
FAN Y P, YAN L Q, JIAN D C, et al. In situ detection of lithium dendrite in the failure of lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(6): 1040-1049. DOI: 10.12028/j.issn.2095-4239.2019.0115.
|
[2] |
LIN X K, KHOSRAVINIA K, HU X S, et al. Lithium plating mechanism, detection, and mitigation in lithium-ion batteries[J]. Progress in Energy and Combustion Science, 2021, 87: 100953. DOI: 10.1016/j.pecs.2021.100953.
|
[3] |
STEIGER J, KRAMER D, MÖNIG R. Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution[J]. Electrochimica Acta, 2014, 136: 529-536. DOI: 10.1016/j.electacta.2014.05.120.
|
[4] |
CHENG J H, ASSEGIE A A, HUANG C J, et al. Visualization of lithium plating and stripping via in operando transmission X-ray microscopy[J]. The Journal of Physical Chemistry C, 2017, 121(14): 7761-7766. DOI: 10.1021/acs.jpcc.7b01414.
|
[5] |
BOMMIER C, CHANG W, LU Y F, et al. In operando acoustic detection of lithium metal plating in commercial LiCoO2/graphite pouch cells[J]. Cell Reports Physical Science, 2020, 1(4): 100035. DOI: 10.1016/j.xcrp.2020.100035.
|
[6] |
JUNG M J, BAKTIYAR A, LEE Y N, et al. Experimental analysis for fast lithium plating detection in voltage relaxation profile of lithium-ion batteries[C]//IECON 2023-49th Annual Conference of the IEEE Industrial Electronics Society. October 16-19, 2023, Singapore, Singapore. IEEE, 2023: 1-6. DOI: 10.1109/IECON 51785.2023.10311689.
|
[7] |
VENNAM G, TANIM T R, TODD J T, et al. Advancing Li-plating detection: Motivating a multi-signal correlation approach[J]. Journal of Energy Storage, 2024, 98: 112869. DOI: 10.1016/j.est. 2024.112869.
|
[8] |
CHEN Y X, TORRES-CASTRO L, CHEN K H, et al. Operando detection of Li plating during fast charging of Li-ion batteries using incremental capacity analysis[J]. Journal of Power Sources, 2022, 539: 231601. DOI: 10.1016/j.jpowsour.2022. 231601.
|
[9] |
BURNS J C, STEVENS D A, DAHN J R. In-situ detection of lithium plating using high precision coulometry[J]. Journal of the Electrochemical Society, 2015, 162(6): A959-A964. DOI: 10.1149/2.0621506jes.
|
[10] |
RANGARAJAN S P, BARSUKOV Y, MUKHERJEE P P. In operando signature and quantification of lithium plating[J]. Journal of Materials Chemistry A, 2019, 7(36): 20683-20695. DOI: 10.1039/C9TA07314K.
|
[11] |
董鹏, 张剑波, 王震坡. 基于电化学阻抗谱的锂离子电池析锂检测方法[J]. 汽车安全与节能学报, 2021, 12(4): 570-579. DOI: 10.3969/j.issn.1674-8484.2021.04.016.
|
|
DONG P, ZHANG J B, WANG Z P. Lithium plating identification based on electrochemical impedance spectra of lithium ion batteries[J]. Journal of Automotive Safety and Energy, 2021, 12(4): 570-579. DOI: 10.3969/j.issn.1674-8484.2021.04.016.
|
[12] |
SUN J L, LYU K, WANG R Y, et al. A multistage constant current charging optimization control strategy based on lithium plating fast detection[J]. Journal of Energy Storage, 2025, 109: 115189. DOI: 10.1016/j.est.2024.115189.
|
[13] |
CHEN B R, KUNZ M R, TANIM T R, et al. A machine learning framework for early detection of lithium plating combining multiple physics-based electrochemical signatures[J]. Cell Reports Physical Science, 2021, 2(3): 100352. DOI: 10.1016/j.xcrp.2021. 100352.
|
[14] |
CHEN B R, WALKER C M, KIM S, et al. Battery aging mode identification across NMC compositions and designs using machine learning[J]. Joule, 2022, 6(12): 2776-2793. DOI: 10. 1016/j.joule.2022.10.016.
|
[15] |
TIAN Y, LIN C, LI H L, et al. Deep neural network-driven in situ detection and quantification of lithium plating on anodes in commercial lithium-ion batteries[J]. EcoMat, 2023, 5(1): e12280. DOI: 10.1002/eom2.12280.
|
[16] |
WANG H, SONG Y J, SUN X, et al. Onboard in situ warning and detection of Li plating for fast-charging batteries with deep learning[J]. Energy Storage Materials, 2024, 71: 103585. DOI: 10.1016/j.ensm.2024.103585.
|
[17] |
DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526-1533. DOI: 10.1149/1.2221597.
|
[18] |
李超. 基于电化学-热耦合模型的析锂特性研究[D]. 镇江: 江苏大学, 2022. DOI: 10.27170/d.cnki.gjsuu.2022.000308.
|
|
LI C. Study on lithium plating characteristics based on electrochemical-thermal coupling model[D]. Zhenjiang: Jiangsu University, 2022. DOI: 10.27170/d.cnki.gjsuu.2022.000308.
|
[19] |
KEIL J, JOSSEN A. Electrochemical modeling of linear and nonlinear aging of lithium-ion cells[J]. Journal of the Electrochemical Society, 2020, 167(11): 110535. DOI: 10.1149/1945-7111/aba44f.
|
[20] |
李义函, 卢世刚, 王晶, 等. 磷酸铁锂锂离子电池低温不可逆析锂及其对电池性能衰减的影响[J]. 储能科学与技术, 2024, 13(10): 3656-3665. DOI: 10.19799/j.cnki.2095-4239.2024.0285.
|
|
LI Y H, LU S G, WANG J, et al. Effect of irreversible lithium plating at low temperature on the performance degradation of LiFePO4 lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(10): 3656-3665. DOI: 10.19799/j.cnki.2095-4239.2024.0285.
|
[21] |
GANIN Y, LEMPITSKY V. Unsupervised domain adaptation by backpropagation[EB/OL]. 2014: 1409.7495. https://arxiv.org/abs/1409.7495v2.
|
[22] |
HE Z H, YANG B, CHEN C X, et al. CLDA: An adversarial unsupervised domain adaptation method with classifier-level adaptation[J]. Multimedia Tools and Applications, 2020, 79(45): 33973-33991. DOI: 10.1007/s11042-020-08877-8.
|