储能科学与技术 ›› 2025, Vol. 14 ›› Issue (7): 2689-2697.doi: 10.19799/j.cnki.2095-4239.2025.0374
展浩1(), 于灏1, 冷梦琦1, 周家硕1, 齐云方2, 吴荣华1(
)
收稿日期:
2025-04-15
修回日期:
2025-05-08
出版日期:
2025-07-28
发布日期:
2025-07-11
通讯作者:
吴荣华
E-mail:25b302043@stu.hit.edu.cn;wuronghua@hit.edu.cn
作者简介:
展浩(1997—),男,博士研究生,研究方向:清洁能源供热;E-mail:25b302043@stu.hit.edu.cn;
基金资助:
Hao ZHAN1(), Hao YU1, Mengqi LENG1, Jiashuo ZHOU1, Yunfang QI2, Ronghua WU1(
)
Received:
2025-04-15
Revised:
2025-05-08
Online:
2025-07-28
Published:
2025-07-11
Contact:
Ronghua WU
E-mail:25b302043@stu.hit.edu.cn;wuronghua@hit.edu.cn
摘要:
清洁能源热泵供热设备通过电力驱动实现能量转换,若基于分时电价政策,利用供热管网作为储热媒介实施峰谷调节,可显著提升系统经济性。本研究针对北方清洁能源供热系统面临的峰谷电价矛盾,提出基于既有供热管网的储能解决方案,构建了“源-储-荷”协同的管网直储系统。该系统以青岛高新区项目(供暖面积22.74×104 m2,管网容水量2000 m3)为工程实例,采用多热源并联架构,实施了三项关键技术:①将一次管网与换热器整合为分布式储热单元;②开发“质-量双调节”控制算法;③构建SCADA实时监测与云端调控平台。运行数据表明,系统可在谷电时段实现一次网温升8.25 ℃(实测R134a机组最高可升温至75 ℃,但不建议在此工况下长期运行),在峰、平电价时段完全停机10 h,同时将二次网温度波动控制在约0.8 ℃范围内。经济评估显示,项目通过分时电价策略(尖峰电价1.25元/kWh,深谷电价0.28元/kWh)实现年收益116.1万元,动态投资回收期为1.75年;同时,计算得出该项目单位建筑面积投资成本约为8.3元/m2。该技术为区域综合能源系统提供了兼具经济性与可靠性的柔性调控方案,对实现“双碳”目标具有重要推广价值。
中图分类号:
展浩, 于灏, 冷梦琦, 周家硕, 齐云方, 吴荣华. 分时电价下供热管网储能优化与实证分析[J]. 储能科学与技术, 2025, 14(7): 2689-2697.
Hao ZHAN, Hao YU, Mengqi LENG, Jiashuo ZHOU, Yunfang QI, Ronghua WU. Optimization and empirical analysis of energy storage in heating networks under time-of-use electricity-price[J]. Energy Storage Science and Technology, 2025, 14(7): 2689-2697.
[1] | FREDERIKSEN S, WERNER S. District heating and cooling[M]. Lund: Studentlitteratur, 2013. |
[2] | BASCIOTTI D, JUDEX F, POL O, et al. Sensible heat storage in district heating networks: a novel control strategy using the network as storage[C]// 6th International Renewable Energy Storage Conference and Exhibition (IRES 2011). November 28-30, 2011, Berlin, Germany. 2011. |
[3] | 曾艾东, 王佳伟, 邹宇航, 等. 考虑供热管网储热的综合能源系统多时间尺度优化调度[J]. 高电压技术, 2023, 49(10): 4192-4202. DOI: 10.13336/j.1003-6520.hve.20222086. |
ZENG A D, WANG J W, ZOU Y H, et al. Multi-time-scale optimal scheduling of integrated energy system considering heat storage characteristics of heating network[J]. High Voltage Engineering, 2023, 49(10): 4192-4202. DOI: 10.13336/j.1003-6520.hve.2022 2086. | |
[4] | 王晋达, 周志刚, 赵加宁, 等. 集中供热管网的蓄热模式与蓄热能力评估[J]. 暖通空调, 2019, 49(1): 46-51, 88. DOI: 10.19991/j.hvac 1971.2019.01.013. |
WANG J D, ZHOU Z G, ZHAO J N, et al. Heat storage mode and capacity evaluation of district heating networks[J]. Heating Ventilating & Air Conditioning, 2019, 49(1): 46-51, 88. DOI: 10. 19991/j.hvac1971.2019.01.013. | |
[5] | PFEIFFER R, VERSTEGE J. Committing and dispatching power units and storage devices in cogeneration systems with renewable energy sources[J]. Fourth International Conference on Power System Control and Management (Conf Publ No 421), 1996: 21-25. |
[6] | 卫丹靖. 供热机组建模及快速变负荷控制[D]. 北京: 华北电力大学, 2017. |
WEI D J. Modeling and control methods of rapid load change for heat supply units[D]. Beijing: North China Electric Power University, 2017. | |
[7] | 杨庆川, 陈美端, 余小兵, 等. 计及蓄热罐与管网虚拟储能热电联供系统的经济运行优化分析[J]. 节能技术, 2024, 42(5): 449-457. |
YANG Q C, CHEN M D, YU X B, et al. Economic-operation optimization analysis of combined heat and power system with considering heat storage tank and pipe-network virtual energy storage[J]. Energy Conservation Technology, 2024, 42(5): 449-457. | |
[8] | 涂远东, 吴薛伟. 供热系统管网虚拟储能开发的技术分析与对策建议[J]. 新能源科技, 2025(1): 22-27. DOI: 10.20145/j.32.1894. 20250103. |
TU Y D, WU X W. Technical analysis and strategic suggestions for the development of pipeline network virtual energy storage of heating system[J]. New Energy Science and Technology, 2025(1): 22-27. DOI: 10.20145/j.32.1894.20250103. | |
[9] | VANDERMEULEN A, VAN DER HEIJDE B, HELSEN L. Controlling district heating and cooling networks to unlock flexibility: A review[J]. Energy, 2018, 151: 103-115. DOI: 10.1016/j.energy.2018.03.034. |
[10] | LI Z G, WU W C, WANG J H, et al. Transmission-constrained unit commitment considering combined electricity and district heating networks[J]. IEEE Transactions on Sustainable Energy, 2016, 7(2): 480-492. DOI: 10.1109/TSTE.2015.2500571. |
[11] | NGUYEN D T, LE L B. Optimal bidding strategy for microgrids considering renewable energy and building thermal dynamics[J]. IEEE Transactions on Smart Grid, 2014, 5(4): 1608-1620. DOI: 10.1109/TSG.2014.2313612. |
[12] | 王凯润, 高继录, 赵笑言. 北方地区集中供热管网的储热研究[J]. 东北电力技术, 2024, 45(12): 37-42. |
WANG K R, GAO J L, ZHAO X Y. Research on heat storage of central heating pipe network in northern China[J]. Northeast Electric Power Technology, 2024, 45(12): 37-42. | |
[13] | 钱军, 王刚, 张明, 等. 大惯性城市热网参与火电机组调峰创新应用研究[J]. 动力工程学报, 2024, 44(12): 1972-1981. DOI: 10.19805/j.cnki.jcspe.2024.240468. |
QIAN J, WANG G, ZHANG M, et al. Innovative application of large inertia urban district heating network participating in peak regulation of thermal power units[J]. Journal of Chinese Society of Power Engineering, 2024, 44(12): 1972-1981. DOI: 10.19805/j.cnki.jcspe.2024.240468. | |
[14] | 龙宝银, 亢岚, 杨培宏, 等. 考虑热惯性及电蓄热锅炉的电力系统深度调峰优化运行[J/OL]. 发电技术, 2025: 1-11. (2025-02-17). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=SLJX20250214001&dbname=CJFD&dbcode=CJFQ. |
LONG B Y, KANG L, YANG P H, et al. Optimal operation of consideration of thermal inertia and electric thermal storage boilers for deep peaking in power systems[J/OL]. Power Generation Technology, 2025: 1-11. (2025-02-17). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=SLJX20250214001&dbname=CJFD&dbcode=CJFQ. | |
[15] | 张玉敏, 尹延宾, 吉兴全, 等. 计及热网不同运行状态下灵活性供给能力的综合能源系统优化调度[J]. 中国电力, 2025, 58(2): 88-102. DOI: 10.11930/j.issn.1004-9649.202407088. |
ZHANG Y M, YIN Y B, JI X Q, et al. Optimal dispatch of integrated electric-heat energy system considering supply flexibility of heat networks under different operation states[J]. Electric Power, 2025, 58(2): 88-102. DOI: 10.11930/j.issn.1004-9649.202407088. | |
[16] | 黄亚峰, 李丹, 严干贵, 等. 考虑热网传输延时及储热的电-热综合能源系统日前优化调度策略[J]. 电测与仪表, 2022, 59(10): 8-15. DOI: 10.19753/j.issn1001-1390.2022.10.002. |
HUANG Y F, LI D, YAN G G, et al. Day-ahead optimal scheduling strategy of electricity-heat integrated energy system considering transmission delay and heat storage of heating network[J]. Electrical Measurement & Instrumentation, 2022, 59(10): 8-15. DOI: 10.19753/j.issn1001-1390.2022.10.002. | |
[17] | 雷琪安, 种道彤, 赵全斌, 等. 热网储能动态仿真及热力学分析[J]. 工程热物理学报, 2024, 45(10): 2965-2973. |
LEI Q A, CHONG D T, ZHAO Q B, et al. Dynamic simulation and thermodynamic analysis of energy storage in heat supply network[J]. Journal of Engineering Thermophysics, 2024, 45(10): 2965-2973. | |
[18] | 杨宇伟, 王海龙, 杨利军, 等. 长输供热管网蓄热试验与热电解耦研究[C]//2024年北京电机工程学会年度论文集. 2024: 19-25. DOI: 10.26914/c.cnkihy.2024.013381. |
[19] | 李平, 王海霞, 王漪, 等. 利用建筑物与热网热动态特性提高热电联产机组调峰能力[J]. 电力系统自动化, 2017, 41(15): 26-33. DOI: 10.7500/AEPS20161117003. |
LI P, WANG H X, WANG Y, et al. Improvement of peak load regulation capacity of combined heat and power units considering dynamic thermal performance of buildings and district heating pipelines network[J]. Automation of Electric Power Systems, 2017, 41(15): 26-33. DOI: 10.7500/AEPS20161117003. | |
[20] | 郭晓雨, 田喆, 牛纪德, 等. 基于分时电价的区域管网系统储能应用研究[J]. 化工学报, 2020, 71(S1): 293-299. DOI: 10.11949/0438-1157.20191155. |
GUO X Y, TIAN Z, NIU J D, et al. Study on energy storage of regional pipe network system based on time-of-use pricing[J]. CIESC Journal, 2020, 71(S1): 293-299. DOI: 10.11949/0438-1157.20191155. |
[1] | 李源, 赵明智, 徐玉杰, 蔡杰. 液态二氧化碳储能系统变工况运行特性[J]. 储能科学与技术, 2025, 14(7): 2761-2771. |
[2] | 李永昭, 马添翼, 尤汉, 李小波, 杨荣贵. 空气气氛下太阳盐与Hitec熔盐的高温稳定性[J]. 储能科学与技术, 2025, 14(7): 2813-2819. |
[3] | 刘坚. 新型储能产业发展关键问题及政策机制[J]. 储能科学与技术, 2025, 14(7): 2625-2634. |
[4] | 陈一鸣, 凌浩恕, 刘猛, 徐玉杰, 沈国清, 贾运, 陈海生. 沸石/水合盐吸附储热材料制备及性能研究[J]. 储能科学与技术, 2025, 14(7): 2853-2864. |
[5] | 郝峻丰, 朱璟, 岑官骏, 乔荣涵, 张新新, 孙蔷馥, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 周洪, 黄学杰. 锂电池百篇论文点评(2025.04.01—2025.05.31)[J]. 储能科学与技术, 2025, 14(7): 2884-2902. |
[6] | 靳慧龙, 刘宏扬, 康赫然, 陈杰, 张天闻, 岳芬, 李晨飞. 国内外独立储能参与电力市场交易机制研究[J]. 储能科学与技术, 2025, 14(7): 2602-2616. |
[7] | 王文瑞, 郝佳豪, 郑平洋, 越云凯, 杨俊玲, 张振涛. 基于高温显热蓄热的二氧化碳卡诺电池系统设计与热经济性分析[J]. 储能科学与技术, 2025, 14(7): 2714-2728. |
[8] | 刘明霞, 赵智勇. “双碳”目标下鄂尔多斯市氢能产业发展路径研究:政策驱动与技术创新视角[J]. 储能科学与技术, 2025, 14(7): 2844-2852. |
[9] | 杜轻. 储能系统性能评估中的数据挖掘算法研究[J]. 储能科学与技术, 2025, 14(7): 2875-2877. |
[10] | 谈家宝, 王育飞, 薛花. 活塞式重力储能系统建模与性能分析[J]. 储能科学与技术, 2025, 14(6): 2383-2390. |
[11] | 屈笑羽, 豆流鑫. 储能技术在食品电商冷链物流中的创新应用与前景分析[J]. 储能科学与技术, 2025, 14(6): 2336-2338. |
[12] | 李政, 任旭凯. 储能电站消防安全管理举措探析[J]. 储能科学与技术, 2025, 14(6): 2377-2379. |
[13] | 张路霞. 基于可重构电池的储能安全系统设计与机制分析[J]. 储能科学与技术, 2025, 14(6): 2380-2382. |
[14] | 陈勋. 基于深度强化学习的储能系统能量管理与优化调度策略[J]. 储能科学与技术, 2025, 14(6): 2439-2441. |
[15] | 黄国平, 区伟潮, 廖峰, 王跃强. 考虑储能系统不确定性的电网风险分析与鲁棒优化[J]. 储能科学与技术, 2025, 14(6): 2473-2475. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||