储能科学与技术 ›› 2025, Vol. 14 ›› Issue (7): 2689-2697.doi: 10.19799/j.cnki.2095-4239.2025.0374

• 第十三届储能国际峰会暨展览会专辑 • 上一篇    下一篇

分时电价下供热管网储能优化与实证分析

展浩1(), 于灏1, 冷梦琦1, 周家硕1, 齐云方2, 吴荣华1()   

  1. 1.哈尔滨工业大学(威海),山东 威海 264209
    2.大唐环境产业集团股份有限公司,北京 100089
  • 收稿日期:2025-04-15 修回日期:2025-05-08 出版日期:2025-07-28 发布日期:2025-07-11
  • 通讯作者: 吴荣华 E-mail:25b302043@stu.hit.edu.cn;wuronghua@hit.edu.cn
  • 作者简介:展浩(1997—),男,博士研究生,研究方向:清洁能源供热;E-mail:25b302043@stu.hit.edu.cn
  • 基金资助:
    清洁能源区域化供热技术与装备开发及应用(2023HBQZYCSB029)

Optimization and empirical analysis of energy storage in heating networks under time-of-use electricity-price

Hao ZHAN1(), Hao YU1, Mengqi LENG1, Jiashuo ZHOU1, Yunfang QI2, Ronghua WU1()   

  1. 1.Harbin Institute of Technology (Weihai), Weihai 264209, Shandong, China
    2.Datang Environment Industry Group Co. , Ltd. , Beijing 100089, China
  • Received:2025-04-15 Revised:2025-05-08 Online:2025-07-28 Published:2025-07-11
  • Contact: Ronghua WU E-mail:25b302043@stu.hit.edu.cn;wuronghua@hit.edu.cn

摘要:

清洁能源热泵供热设备通过电力驱动实现能量转换,若基于分时电价政策,利用供热管网作为储热媒介实施峰谷调节,可显著提升系统经济性。本研究针对北方清洁能源供热系统面临的峰谷电价矛盾,提出基于既有供热管网的储能解决方案,构建了“源-储-荷”协同的管网直储系统。该系统以青岛高新区项目(供暖面积22.74×104 m2,管网容水量2000 m3)为工程实例,采用多热源并联架构,实施了三项关键技术:①将一次管网与换热器整合为分布式储热单元;②开发“质-量双调节”控制算法;③构建SCADA实时监测与云端调控平台。运行数据表明,系统可在谷电时段实现一次网温升8.25 ℃(实测R134a机组最高可升温至75 ℃,但不建议在此工况下长期运行),在峰、平电价时段完全停机10 h,同时将二次网温度波动控制在约0.8 ℃范围内。经济评估显示,项目通过分时电价策略(尖峰电价1.25元/kWh,深谷电价0.28元/kWh)实现年收益116.1万元,动态投资回收期为1.75年;同时,计算得出该项目单位建筑面积投资成本约为8.3元/m2。该技术为区域综合能源系统提供了兼具经济性与可靠性的柔性调控方案,对实现“双碳”目标具有重要推广价值。

关键词: 管网储热, 清洁供热, 分时电价, 柔性控制

Abstract:

Heating systems based on the clean energy heat pump achieve energy conversion through electrical power. The economic efficiency of the system can be drastically improved by leveraging time-of-use electricity pricing policies and utilizing the heating pipe network as a thermal storage medium for peak-valley load shifting. Addressing the conflict arising from peak-valley electricity pricing for clean energy heating systems in northern regions, this study proposes an energy storage solution based on existing heating pipe networks to construct a "source-storage-load" coordinated direct pipe network storage system.Taking the Qingdao High-tech Zone project (a heating area of 227,400 m2 and a pipe network water capacity of 2000 tons) as an engineering case study, a multi-source parallel architecture was adopted. Three key technologies were implemented: ① integrating the primary pipe network and heat exchangers into distributed thermal storage units, ② developing a "quality-quantity dual regulation" control algorithm, and ③ establishing a SCADA real-time monitoring and cloud-based control platform.Operational data indicate that the system can achieve a rise of 8.25 ℃ in the primary network temperature during off-peak electricity periods. Although measured data indicate that R134a units can reach temperatures of up to 75 ℃, long-term operation under these conditions is not recommended. This rise allows for a complete shutdown for 10 h during the peak and flat electricity-price periods, while maintaining secondary network temperature fluctuations within 0.8 ℃.An economic assessment revealed that through the time-of-use pricing strategy (peak price: 1.25 RMB/kWh; deep valley price: 0.28 RMB/kWh), the project could achieve an annual revenue of 1.161 million RMB, with a dynamic payback period of 1.75 years. The study also confirmed that in this project, the investment cost per unit building area is only 8.3 RMB.This technology provides a flexible control solution for regional integrated energy systems. This solution is both economical and reliable, holding significant value for achieving the "dual carbon" goals.

Key words: network thermal storage, clean heating, time-of-use (TOU) Pricing, flexible control

中图分类号: