储能科学与技术 ›› 2025, Vol. 14 ›› Issue (7): 2714-2728.doi: 10.19799/j.cnki.2095-4239.2025.0084
王文瑞1,2(), 郝佳豪1,2, 郑平洋1,2, 越云凯1,3, 杨俊玲1(
), 张振涛1,2,3
收稿日期:
2025-01-23
修回日期:
2025-03-12
出版日期:
2025-07-28
发布日期:
2025-07-11
通讯作者:
杨俊玲
E-mail:wangwenrui23@mails.ucas.ac.cn;yangjl@mail.ipc.ac.cn
作者简介:
王文瑞(2003—),女,硕士研究生,从事高温CO2卡诺电池系统及蓄热部件研究,E-mail:wangwenrui23@mails.ucas.ac.cn;
基金资助:
Wenrui WANG1,2(), Jiahao HAO1,2, Pingyang Zheng1,2, Yunkai YUE1,3, Junling YANG1(
), Zhentao ZHANG1,2,3
Received:
2025-01-23
Revised:
2025-03-12
Online:
2025-07-28
Published:
2025-07-11
Contact:
Junling YANG
E-mail:wangwenrui23@mails.ucas.ac.cn;yangjl@mail.ipc.ac.cn
摘要:
卡诺电池是一种基于卡诺循环的以热能(㶲)形式存储电能的热机械式储能技术,具有结构简单、环境友好、经济性高、灵活性强等优势。本文设计了分别基于布雷顿循环和跨临界朗肯循环的10 MW级高温CO2卡诺电池系统,建立了系统与各部件的数学模型,讨论了不同显热蓄热方式对系统热力学性能的影响规律并进行了热经济性分析。研究发现,在400 ℃左右的蓄热温度下,本文所提出的布雷顿循环CO2卡诺电池系统往返效率可达66.6%,跨临界朗肯循环CO2卡诺电池系统往返效率可达60.4%。本文还分析了工质流量、高温压缩机入口压力及高温膨胀机入口压力等参数变化对系统性能的影响,针对不同循环过程及组成部件进行了㶲分析和经济性分析,给出了系统优化建议。综合热力学性能以及经济性评价,采用固体蓄热的跨临界朗肯循环CO2卡诺电池为最优选择。本文研究结果为CO2卡诺电池系统的设计优化与应用提供了一定的参考。
中图分类号:
王文瑞, 郝佳豪, 郑平洋, 越云凯, 杨俊玲, 张振涛. 基于高温显热蓄热的二氧化碳卡诺电池系统设计与热经济性分析[J]. 储能科学与技术, 2025, 14(7): 2714-2728.
Wenrui WANG, Jiahao HAO, Pingyang Zheng, Yunkai YUE, Junling YANG, Zhentao ZHANG. Design and thermoeconomic assessments of CO2 Carnot battery employing sensible heat storage at high temperatures[J]. Energy Storage Science and Technology, 2025, 14(7): 2714-2728.
表13
不同循环卡诺电池相关研究总结"
循环类型 | 系统特点 | 工质 | 往返效率 | 经济成本 |
---|---|---|---|---|
布雷顿循环系统 | 采用规则耐火砖,以填充床形式蓄热[ | 氩气 | 52%~72% | ECC=9~11 $/kWh |
采用不规则破碎玄武岩,以填充床形式蓄热[ | 空气 | 约45% | ECC=13 $/kWh | |
采用玄武岩,以填充床形式蓄热[ | 氩气和氦气 | 约80% | LCOE=0.4 $/kWh | |
采用熔盐,以双罐式蓄热[ | 超临界CO2 | 60%~78% | 未进行经济性分析 | |
朗肯循环系统 | 采用常压水以储罐形式蓄热[ | CO2 | 48%~64% | TCC=27~38 M$ |
采用相变材料,以填充床形式蓄热[ | CO2 | 43%~56% | LCOE=0.32~0.5 $/kWh | |
采用常压水/导热油,以储罐形式蓄热[ | CO2+有机工质 | 58% | 未进行经济性分析 | |
采用加压水/相变材料,以储罐形式蓄热[ | 有机工质 | 60%~110% | 未进行经济性分析 |
[1] | LI F Y, YU Y P, SHU Y, et al. Study on characteristics of photovoltaic and photothermal coupling compressed air energy storage system[J]. Process Safety and Environmental Protection, 2023, 178: 147-155. DOI: 10.1016/j.psep.2023.08.033. |
[2] | 陈海生, 刘畅, 徐玉杰, 等. 储能在碳达峰碳中和目标下的战略地位和作用[J]. 储能科学与技术, 2021, 10(5): 1477-1485. DOI: 10. 19799/j.cnki.2095-4239.2021.0389. |
CHEN H S, LIU C, XU Y J, et al. The strategic position and role of energy storage under the goal of carbon peak and carbon neutrality[J]. Energy Storage Science and Technology, 2021, 10(5): 1477-1485. DOI: 10.19799/j.cnki.2095-4239.2021.0389. | |
[3] | 陈海生, 李泓, 徐玉杰, 等. 2023年中国储能技术研究进展[J]. 储能科学与技术, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. |
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2023[J]. Energy Storage Science and Technology, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. | |
[4] | LIANG T, VECCHI A, KNOBLOCH K, et al. Key components for Carnot battery: Technology review, technical barriers and selection criteria[J]. Renewable and Sustainable Energy Reviews, 2022, 163: 112478. DOI: 10.1016/j.rser.2022.112478. |
[5] | DESRUES T, RUER J, MARTY P, et al. A thermal energy storage process for large scale electric applications[J]. Applied Thermal Engineering, 2010, 30(5): 425-432. DOI: 10.1016/j.applthermaleng. 2009.10.002. |
[6] | GUO J C, CAI L, CHEN J C, et al. Performance evaluation and parametric choice criteria of a Brayton pumped thermal electricity storage system[J]. Energy, 2016, 113: 693-701. DOI: 10.1016/j.energy.2016.07.080. |
[7] | MCTIGUE J D, WHITE A J, MARKIDES C N. Parametric studies and optimisation of pumped thermal electricity storage[J]. Applied Energy, 2015, 137: 800-811. DOI: 10.1016/j.apenergy.2014. 08.039. |
[8] | WHITE A J. Loss analysis of thermal reservoirs for electrical energy storage schemes[J]. Applied Energy, 2011, 88(11): 4150-4159. DOI: 10.1016/j.apenergy.2011.04.030. |
[9] | 张涵, 王亮, 林曦鹏, 等. 基于逆/正布雷顿循环的热泵储电系统性能[J]. 储能科学与技术, 2021, 10(5): 1796-1805. DOI: 10.19799/j.cnki.2095-4239.2021.0330. |
ZHANG H, WANG L, LIN X P, et al. Performance of pumped thermal electricity storage system based on reverse/forward Brayton cycle[J]. Energy Storage Science and Technology, 2021, 10(5): 1796-1805. DOI: 10.19799/j.cnki.2095-4239.2021.0330. | |
[10] | NI F, CARAM H S. Analysis of pumped heat electricity storage process using exponential matrix solutions[J]. Applied Thermal Engineering, 2015, 84: 34-44. DOI: 10.1016/j.applthermaleng. 2015.02.046. |
[11] | STEINMANN W D, JOCKENHÖFER H, BAUER D. Thermodynamic analysis of high-temperature Carnot battery concepts[J]. Energy Technology, 2020, 8(3): 1900895. DOI: 10.1002/ente.201900895. |
[12] | DUMONT O, FRATE G F, PILLAI A, et al. Carnot battery technology: A state-of-the-art review[J]. Journal of Energy Storage, 2020, 32: 101756. DOI: 10.1016/j.est.2020.101756. |
[13] | VECCHI A, KNOBLOCH K, LIANG T, et al. Carnot Battery development: A review on system performance, applications and commercial state-of-the-art[J]. Journal of Energy Storage, 2022, 55: 105782. DOI: 10.1016/j.est.2022.105782. |
[14] | ZHOU T, SHI L F, SUN X C, et al. Performance enhancement of thermal-integrated Carnot battery through zeotropic mixtures[J]. Energy, 2024, 311: 133328. DOI: 10.1016/j.energy.2024.133328. |
[15] | LI Y C, HU P, NI H, et al. Performance analysis and optimisation of waste heat recovery system based on zeotropic working fluid[J]. Applied Thermal Engineering, 2024, 253: 123799. DOI: 10.1016/j.applthermaleng.2024.123799. |
[16] | MERCANGÖZ M, HEMRLE J, KAUFMANN L, et al. Electrothermal energy storage with transcritical CO2 cycles[J]. Energy, 2012, 45(1): 407-415. DOI: 10.1016/j.energy.2012. 03.013. |
[17] | KIM Y M, SHIN D G, LEE S Y, et al. Isothermal transcritical CO2 cycles with TES (thermal energy storage) for electricity storage[J]. Energy, 2013, 49: 484-501. DOI: 10.1016/j.energy.2012. 09.057. |
[18] | WANG G B, ZHANG X R. Thermodynamic analysis of a novel pumped thermal energy storage system utilizing ambient thermal energy and LNG cold energy[J]. Energy Conversion and Management, 2017, 148: 1248-1264. DOI: 10.1016/j.enconman. 2017.06.044. |
[19] | 谭鋆, 丁若晨, 周晓宇, 等. 液冷数据中心余热驱动的"热泵-跨临界CO2发电"卡诺电池热力性能分析 [J]. 储能科学与技术, 2025,14(4): 1471-1480. DOI:10.19799/j.cnki.2095-4239.2024.0934. |
TAN Y, DING R, ZHOU X, et al. Thermal performance analysis of "heat pump-transcritical CO2 power generation" Carnot battery driven by waste heat in liquid-cooled data centers[J]. Energy Storage Science and Technology 2025, 14(4): 1471-1480. DOI:10.19799/j.cnki.2095-4239.2024.0934. | |
[20] | WANG K, SHI X P, HE Q. Thermodynamic analysis of novel carbon dioxide pumped-thermal energy storage system[J]. Applied Thermal Engineering, 2024, 255: 123969. DOI: 10.1016/j.applthermaleng.2024.123969. |
[21] | 郝佳豪, 越云凯, 张家俊, 等. 二氧化碳储能技术研究现状与发展前景[J]. 储能科学与技术, 2022, 11(10): 3285-3296. DOI: 10.19799/j.cnki.2095-4239.2022.0199. |
HAO J H, YUE Y K, ZHANG J J, et al. Research status and development prospect of carbon dioxide energy-storage technology[J]. Energy Storage Science and Technology, 2022, 11(10): 3285-3296. DOI: 10.19799/j.cnki.2095-4239.2022.0199. | |
[22] | ZHANG Y, SHEN X J, TIAN Z, et al. Comparative study of operating modes on a gaseous two-stage compressed carbon dioxide energy storage system through energy and exergy analysis based on dynamic simulation[J]. Energy, 2025, 316: 134521. DOI: 10.1016/j.energy.2025.134521. |
[23] | MA H L, TONG Y, WANG X, et al. Advancements and assessment of compressed carbon dioxide energy storage technologies: A comprehensive review[J]. RSC Sustainability, 2024, 2(10): 2731-2750. DOI: 10.1039/D4SU00211C. |
[24] | DUMONT O, LEMORT V. Mapping of performance of pumped thermal energy storage (Carnot battery) using waste heat recovery[J]. Energy, 2020, 211: 118963. DOI: 10.1016/j.energy. 2020.118963. |
[25] | FILALI BABA Y, AJDAD H, MERS A A L, et al. Multilevel comparison between magnetite and quartzite as thermocline energy storage materials[J]. Applied Thermal Engineering, 2019, 149: 1142-1153. DOI: 10.1016/j.applthermaleng.2018.12.002. |
[26] | WANG L, LIN X P, CHAI L, et al. Cyclic transient behavior of the Joule-Brayton based pumped heat electricity storage: Modeling and analysis[J]. Renewable and Sustainable Energy Reviews, 2019, 111: 523-534. DOI: 10.1016/j.rser.2019.03.056. |
[27] | DIETRICH A, DAMMEL F, STEPHAN P. Exergoeconomic analysis of a pumped heat electricity storage system with concrete thermal energy storage[J]. International Journal of Thermodynamics, 2016, 19(1): 43. DOI: 10.5541/ijot.5000156078. |
[28] | SALOMONE-GONZÁLEZ D, GONZÁLEZ-AYALA J, MEDINA A, et al. Pumped heat energy storage with liquid media: Thermodynamic assessment by a Brayton-like model[J]. Energy Conversion and Management, 2020, 226: 113540. DOI: 10.1016/j.enconman.2020.113540. |
[29] | LI P W, VAN LEW J, CHAN C, et al. Similarity and generalized analysis of efficiencies of thermal energy storage systems[J]. Renewable Energy, 2012, 39(1): 388-402. DOI: 10.1016/j.renene. 2011.08.032. |
[30] | ZHAO Y L, SONG J, LIU M, et al. Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials[J]. Renewable Energy, 2022, 186: 431-456. DOI: 10.1016/j.renene.2022.01.017. |
[31] | FU H L, HE Q, SONG J T, et al. Thermodynamic of a novel solar heat storage compressed carbon dioxide energy storage system[J]. Energy Conversion and Management, 2021, 247: 114757. DOI: 10.1016/j.enconman.2021.114757. |
[32] | HADELU L M, NOORPOOR A, BOYAGHCHI F A. Assessment and multi-objective dragonfly optimization of utilizing flash tank vapor injection cycle in a new geothermal assisted-pumped thermal energy storage system based on transcritical CO2 cycle[J]. Journal of Energy Storage, 2024, 88: 111628. DOI: 10.1016/j.est.2024.111628. |
[33] | MORANDIN M, MERCANGÖZ M, HEMRLE J, et al. Thermoeconomic design optimization of a thermo-electric energy storage system based on transcritical CO2 cycles[J]. Energy, 2013, 58: 571-587. DOI: 10.1016/j.energy.2013.05.038. |
[34] | LI J Y, TARPANI R R Z, GALLEGO-SCHMID A, et al. Life cycle assessment of repurposing abandoned onshore oil and gas wells for geothermal power generation[J]. Science of The Total Environment, 2024, 907: 167843. DOI: 10.1016/j.scitotenv.2023. 167843. |
[35] | XU W P, ZHAO P, LIU A J, et al. Design and off-design performance analysis of a liquid carbon dioxide energy storage system integrated with low-grade heat source[J]. Applied Thermal Engineering, 2023, 228: 120570. DOI: 10.1016/j.applthermaleng. 2023.120570. |
[36] | 文军, 刘楠, 裴杰, 等. 储能技术全生命周期度电成本分析[J]. 热力发电, 2021, 50(8): 24-29. DOI: 10.19666/j.rlfd.202105094. |
WEN J, LIU N, PEI J, et al. Life cycle cost analysis for energy storage technology[J]. Thermal Power Generation, 2021, 50(8): 24-29. DOI: 10.19666/j.rlfd.202105094. | |
[37] | SMALLBONE A, JÜLCH V, WARDLE R, et al. Levelised cost of storage for pumped heat energy storage in comparison with other energy storage technologies[J]. Energy Conversion and Management, 2017, 152: 221-228. DOI: 10.1016/j.enconman. 2017.09.047. |
[38] | GEORGIOU S, AUNEDI M, STRBAC G, et al. On the value of liquid-air and pumped-thermal electricity storage systems in low-carbon electricity systems[J]. Energy, 2020, DOI:10.1016/j.energy.2019.116680. |
[39] | MCTIGUE J, FARRES-ANTUNEZ P, ELLINGWOOD K, et al. Pumped thermal electricity storage with supercritical CO2 Cycles and Solar heat input[C]//proceedings of the SolarPACES 2019, 2019. |
[40] | MORANDIN M, MARÉCHAL F, MERCANGÖZ M, et al. Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles-Part A: Methodology and base case[J]. Energy, 2012, 45(1): 375-385. DOI: 10.1016/j.energy.2012.03.031. |
[41] | TAUVERON N, MACCHI E, NGUYEN D, et al. Experimental study of supercritical CO2 heat transfer in a thermo-electric energy storage based on Rankine and heat-pump cycles[J]. Energy Procedia, 2017, 129: 939-946. DOI: 10.1016/j.egypro. 2017.09.121. |
[42] | FRATE G F, ANTONELLI M, DESIDERI U. A novel pumped thermal electricity storage (PTES) system with thermal integration[J]. Applied Thermal Engineering, 2017, 121: 1051-1058. DOI: 10.1016/j.applthermaleng.2017.04.127. |
[1] | 李源, 赵明智, 徐玉杰, 蔡杰. 液态二氧化碳储能系统变工况运行特性[J]. 储能科学与技术, 2025, 14(7): 2761-2771. |
[2] | 王斌, 刘金恺, 姜晓霞, 白宁, 鹿院卫. 基于经济性分析的熔盐储热辅助燃煤机组灵活调峰系统优化[J]. 储能科学与技术, 2025, 14(7): 2729-2737. |
[3] | 陈珣, 王敦敦, 胡晓, 李敏霞, 越云凯. 集成双压冷凝与双压蒸发技术的增强型卡诺电池系统[J]. 储能科学与技术, 2025, 14(5): 2035-2042. |
[4] | 谭鋆, 丁若晨, 周晓宇, 蔺新星, 苏文, 徐波, 吴宏. 液冷数据中心余热驱动的“热泵-跨临界CO2 发电”卡诺电池热力性能分析[J]. 储能科学与技术, 2025, 14(4): 1471-1480. |
[5] | 于博旭, 韩瑞, 刘倩, 廖志荣, 巨星, 徐超. 耦合火电厂灵活改造的卡诺电池储能系统热力学性能研究[J]. 储能科学与技术, 2025, 14(4): 1461-1470. |
[6] | 沈代兵, 郝佳豪, 宋衍昌, 杨俊玲, 张振涛, 越云凯. 百千瓦级二氧化碳储能系统向心透平设计与结构参数优化[J]. 储能科学与技术, 2025, 14(3): 1270-1285. |
[7] | 王雷, 闫瑞涛, 张凡, 闫娜, 岳芬, 傅旭, 刘梦晨, 杨韵彰. 基于现货电能量市场与一次调频市场联合优化模型的独立储能项目经济性分析[J]. 储能科学与技术, 2025, 14(2): 834-845. |
[8] | 王青山, 李妍, 张群, 汪德成. 不同规模化机械储能技术在高比例可再生能源电力系统中应用的比较分析[J]. 储能科学与技术, 2025, 14(2): 854-867. |
[9] | 林旗力, 陈珍, 王晓虎, 戚宏勋, 王伟. 基于“电-氢-电”过程的规模化氢储能经济性分析[J]. 储能科学与技术, 2024, 13(6): 2068-2077. |
[10] | 张涛, 刘嘉楷, 戴天乐, 许诚. 二氧化碳电热储能与液态储能系统热力性能对比分析[J]. 储能科学与技术, 2024, 13(5): 1554-1563. |
[11] | 张留淦, 周颖驰, 孙文兵, 叶楷, 陈龙祥. 利用ORC-VCR回收压缩热的预冷式CAES系统性能分析[J]. 储能科学与技术, 2024, 13(2): 611-622. |
[12] | 李峰, 鹿院卫, 王彦泉, 马彦成, 吴玉庭. 翼型结构对印刷电路板换热器流动与换热特性影响[J]. 储能科学与技术, 2024, 13(2): 416-424. |
[13] | 丁扬, 王翰文, 陆文杰, 罗元俊, 凌祥. 基于热泵储电的绝热钙循环卡诺电池系统特性及优化研究[J]. 储能科学与技术, 2024, 13(12): 4247-4258. |
[14] | 王化宁, 薛新杰, 张勉恒, 王嘉浩, 杨斌, 赵长颖. 卡诺电池堆积床潜热储热装置的实验和数值研究[J]. 储能科学与技术, 2024, 13(11): 3906-3920. |
[15] | 张宇, 李敏霞, 李君, 颜利波, 张家兴, 王志朋, 田华. 面向数据中心液冷装置余热回收的卡诺电池储能系统可行性分析[J]. 储能科学与技术, 2024, 13(11): 3921-3929. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||