[1] |
刘世宇, 陈俊杰. "十四五" 新能源消纳形势分析与建议[J]. 新能源科技, 2021(10): 35-37.
|
|
LIU S Y, CHEN J J. Analysis and suggestions on the consumption situation of new energy in the 14th Five-Year Plan[J]. New Energy Technology, 2021(10): 35-37.
|
[2] |
崔杨, 张家瑞, 王铮, 等. 计及价格型需求响应的风-光-光热联合发电系统日前调度策略[J]. 中国电机工程学报, 2020, 40(10): 3103-3114. DOI: 10.13334/j.0258-8013.pcsee.191388.
|
|
CUI Y, ZHANG J R, WANG Z, et al. Day-ahead scheduling strategy of wind-PV-CSP hybrid power generation system by considering PDR[J]. Proceedings of the CSEE, 2020, 40(10): 3103-3114. DOI: 10.13334/j.0258-8013.pcsee.191388.
|
[3] |
陈海生, 李泓, 徐玉杰, 等. 2022年中国储能技术研究进展[J]. 储能科学与技术, 2023, 12(5): 1516-1552. DOI: 10.19799/j.cnki.2095-4239.2023.0330.
|
|
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2022[J]. Energy Storage Science and Technology, 2023, 12(5): 1516-1552. DOI: 10.19799/j.cnki.2095-4239.2023.0330.
|
[4] |
张成凤, 朱轶林, 胡东子, 等. 火-储耦合系统深度调峰综合经济性分析[J]. 储能科学与技术, 2024, 13(10): 3693-3705. DOI: 10.19799/j.cnki.2095-4239.2024.0250.
|
|
ZHANG C F, ZHU Y L, HU D Z, et al. Comprehensive economic analysis of deep peak shaving in thermal power-heat storage coupling systems[J]. Energy Storage Science and Technology, 2024, 13(10): 3693-3705. DOI: 10.19799/j.cnki.2095-4239. 2024. 0250.
|
[5] |
周科, 李银龙, 李明皓, 等. 燃煤发电-物理储热耦合技术研究进展与系统调峰能力分析[J]. 洁净煤技术, 2022, 28(3): 159-172. DOI: 10.13226/j.issn.1006-6772.CC22010501.
|
|
ZHOU K, LI Y L, LI M H, et al. Research progress on the coupling technology of coal-fired power generation-physical thermal storage and analysis for the system peaking capacity[J]. Clean Coal Technology, 2022, 28(3): 159-172. DOI: 10.13226/j.issn. 1006-6772.CC22010501.
|
[6] |
毛翠骥, 余雄江, 徐进良, 等. 耦合熔融盐储热的火电机组灵活调峰系统关键技术研究进展[J]. 热力发电, 2023, 52(2): 10-22. DOI: 10. 19666/j.rlfd.202208183.
|
|
MAO C J, YU X J, XU J L, et al. Research progress on key technologies of flexible peak shaving system of thermal power unit coupled with molten salt heat storage[J]. Thermal Power Generation, 2023, 52(2): 10-22. DOI: 10.19666/j.rlfd.202208183.
|
[7] |
WOJCIK J D, WANG J H. Technical feasibility study of thermal energy storage integration into the conventional power plant cycle[J]. Energies, 2017, 10(2): 205. DOI: 10.3390/en10020205.
|
[8] |
CAO R F, LU Y, YU D R, et al. A novel approach to improving load flexibility of coal-fired power plant by integrating high temperature thermal energy storage through additional thermodynamic cycle[J]. Applied Thermal Engineering, 2020, 173: 115225. DOI: 10.1016/j.applthermaleng.2020.115225.
|
[9] |
WEI H J, LU Y W, YANG Y C, et al. Research on influence of steam extraction parameters and operation load on operational flexibility of coal-fired power plant[J]. Applied Thermal Engineering, 2021, 195: 117226. DOI: 10.1016/j.applthermaleng. 2021.117226.
|
[10] |
WEI H J, LU Y W, YANG Y C, et al. Flexible operation mode of coal-fired power unit coupling with heat storage of extracted reheat steam[J]. Journal of Thermal Science, 2022, 31(2): 436-447. DOI: 10.1007/s11630-022-1583-z.
|
[11] |
魏海姣, 鹿院卫, 吴玉庭, 等. 燃煤机组灵活性运行系统分析[J]. 北京工业大学学报, 2022, 48(12): 1307-1318.
|
|
WEI H J, LU Y W, WU Y T, et al. Exergy analysis of flexible operation of coal-fired power plant[J]. Journal of Beijing University of Technology, 2022, 48(12): 1307-1318.
|
[12] |
庞力平, 张世刚, 段立强. 高温熔盐储能提高二次再热机组灵活性研究[J]. 中国电机工程学报, 2021, 41(8): 2682-2691. DOI: 10.13334/j.0258-8013.pcsee.200771.
|
|
PANG L P, ZHANG S G, DUAN L Q. Flexibility improvement study on the double reheat power generation unit with a high temperature molten salt thermal energy storage[J]. Proceedings of the CSEE, 2021, 41(8): 2682-2691. DOI: 10.13334/j.0258-8013.pcsee.200771.
|
[13] |
冀帅宇, 段立强, 王远慧, 等. 典型燃煤机组灵活调峰策略及性能研究[J]. 热力发电, 2023, 52(9): 94-103. DOI: 10.19666/j.rlfd. 202305092.
|
|
JI S Y, DUAN L Q, WANG Y H, et al. Research on flexible peak load regulation strategy and performance of typical coal-fired units[J]. Thermal Power Generation, 2023, 52(9): 94-103. DOI: 10.19666/j.rlfd.202305092.
|
[14] |
张可臻, 刘明, 赵永亮, 等. 燃煤机组集成再热蒸汽熔盐储热系统的运行灵活性与热力性能分析[J]. 工程热物理学报, 2023, 44(9): 2331-2339.
|
|
ZHANG K Z, LIU M, ZHAO Y L, et al. Operation flexibility and thermal performance analysis of integrated molten salt heat storage system extracting heat from the reheat steam for coal-fired power plants[J]. Journal of Engineering Thermophysics, 2023, 44(9): 2331-2339.
|
[15] |
张猛, 刘鑫屏. 350 MW供热机组低压缸切除改造灵活性提升分析[J]. 华北电力大学学报(自然科学版), 2019, 46(3): 73-79. DOI: 10. 3969/j.ISSN.1007-2691.2019.03.10.
|
|
ZHANG M, LIU X P. Flexibility improvement in heating units through low-pressure cylinder excision of 350 MW heating unit[J]. Journal of North China Electric Power University (Natural Science Edition), 2019, 46(3): 73-79. DOI: 10.3969/j.ISSN.1007-2691.2019.03.10.
|
[16] |
林军, 李军. 火电厂直热式电锅炉灵活性改造实践[J]. 吉林电力, 2017, 45(5): 11-14. DOI: 10.16109/j.cnki.jldl.2017.05.004.
|
|
LIN J, LI J. Practice of flexible reformation of direct thermal electric boiler in thermal power plant[J]. Jilin Electric Power, 2017, 45(5): 11-14. DOI: 10.16109/j.cnki.jldl.2017.05.004.
|
[17] |
章艳, 吕泉, 李杨, 等. 四种热电厂电热解耦改造方案的运行灵活性剖析[J]. 电力系统自动化, 2020, 44(2): 164-172. DOI: 10.7500/AEPS20190509006.
|
|
ZHANG Y, LYU Q, LI Y, et al. Analysis on operation flexibility of combined heat and power plant with four improved power-heat decoupling schemes[J]. Automation of Electric Power Systems, 2020, 44(2): 164-172. DOI: 10.7500/AEPS20190509006.
|
[18] |
王玉宏, 闫保柱, 杨殿臣, 等. 甘肃某电厂电蓄热调峰灵活性技术改造设计[J]. 电力勘测设计, 2020(5): 39-44, 82. DOI: 10.13500/j.dlkcsj.issn1671-9913.2020.05.008.
|
|
WANG Y H, YAN B Z, YANG D C, et al. Technical transformation of peaking flexibility of electric heat storage in a power plant in Gansu Province[J]. Electric Power Survey & Design, 2020(5): 39-44, 82. DOI: 10.13500/j.dlkcsj.issn1671-9913.2020.05.008.
|
[19] |
徐正, 霍玉龙. 高背压供热技术的技术风险及经济效益分析[J]. 黑龙江电力, 2020, 42(6): 527-532, 559. DOI: 10.13625/j.cnki.hljep. 2020.06.012.
|
|
XU Z, HUO Y L. Analysis of technical risk and economic benefit about high back pressure heating technology[J]. Heilongjiang Electric Power, 2020, 42(6): 527-532, 559. DOI: 10.13625/j.cnki.hljep.2020.06.012.
|
[20] |
魏海姣. 基于储热的燃煤机组深度调峰系统构建及其规模化消纳风力发电模式研究[D]. 北京: 北京工业大学, 2022. DOI: 10.26935/d.cnki.gbjgu.2022.000050.
|
|
WEI H J. Research on deep peak shaving system establishment of coal-fired power unit integrated with thermal energy storage and its application mode for large-scale wind power consumption[D]. Beijing: Beijing University of Technology, 2022. DOI: 10. 26935/d.cnki.gbjgu.2022.000050.
|
[21] |
杨绪青. 耦合电加热的压缩空气储能系统集成研究与性能分析[D]. 青岛: 青岛科技大学, 2022. DOI: 10.27264/d.cnki.gqdhc. 2022. 001139.
|
|
YANG X Q. Integration research and performance analysis of compressed ari energy storage system coupled with electric heating[D]. Qingdao: Qingdao University of Science & Technology, 2022. DOI: 10.27264/d.cnki.gqdhc.2022.001139.
|
[22] |
陈建生. 太阳能-sCO2循环发电系统集成及热-经济-环境分析与优化[D]. 广州: 广东工业大学, 2021. DOI: 10.27029/d.cnki.ggdgu. 2021.001473.
|
|
CHEN J S. SPT-sCO2 cycle power generation system thermal-economy-environment analysis and optimization[D]. Guangzhou: Guangdong University of Technology, 2021. DOI: 10.27029/d.cnki.ggdgu.2021.001473.
|