[1] |
ZHENG Y J, OUYANG M G, HAN X B, et al. Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles[J]. Journal of Power Sources, 2018, 377: 161-188. DOI: 10.1016/j.jpowsour.2017. 11.094.
|
[2] |
PLETT G L. Battery management systems, Volume II: Equivalent-circuit methods[M]. London: Artech House, 2015.
|
[3] |
TIAN J Q, LIU X H, LI S Q, et al. Lithium-ion battery health estimation with real-world data for electric vehicles[J]. Energy, 2023, 270: 126855. DOI: 10.1016/j.energy.2023.126855.
|
[4] |
ZHANG C P, JIANG Y, JIANG J C, et al. Study on battery pack consistency evolutions and equilibrium diagnosis for serial- connected lithium-ion batteries[J]. Applied Energy, 2017, 207: 510-519. DOI: 10.1016/j.apenergy.2017.05.176.
|
[5] |
TIAN J Q, WANG Y J, LIU C, et al. Consistency evaluation and cluster analysis for lithium-ion battery pack in electric vehicles[J]. Energy, 2020, 194: 116944. DOI: 10.1016/j.energy.2020.116944.
|
[6] |
ZHAO D, ZHOU Z J, ZHANG P, et al. Health condition assessment of satellite Li-ion battery pack considering battery inconsistency and pack performance indicators[J]. Journal of Energy Storage, 2023, 60: 106604. DOI: 10.1016/j.est.2023. 106604.
|
[7] |
ZHENG L F, ZHU J G, WANG G X, et al. Differential voltage analysis based state of charge estimation methods for lithium-ion batteries using extended Kalman filter and particle filter[J]. Energy, 2018, 158: 1028-1037. DOI: 10.1016/j.energy.2018. 06.113.
|
[8] |
FENG F, HU X S, LIU K L, et al. A practical and comprehensive evaluation method for series-connected battery pack models[J]. IEEE Transactions on Transportation Electrification, 2020, 6(2): 391-416. DOI: 10.1109/TTE.2020.2983846.
|
[9] |
GE Y L, CHEN Z Q. Inconsistency identification and state estimation of series-connected lithium-ion battery pack based on STF&LM algorithm[J]. Proceedings of the Chinese Society of Electrical Engineering, 2018, 38(14): 4271-4280. DOI: 10.13334/j.0258-8013.pcsee.171366.
|
[10] |
陈峥, 杨博, 赵志刚, 等. 考虑锂电池温度和老化的荷电状态估算[J]. 储能科学与技术, 2024, 13(8): 2813-2822. DOI: 10.19799/j.cnki. 2095-4239.2024.0141.
|
|
CHEN Z, YANG B, ZHAO Z G, et al. State of charge estimation considering lithium battery temperature and aging[J]. Energy Storage Science and Technology, 2024, 13(8): 2813-2822. DOI: 10.19799/j.cnki.2095-4239.2024.0141.
|
[11] |
任璞, 王顺利, 何明芳, 等. 基于内阻增加和容量衰减双重标定的锂电池健康状态评估[J]. 储能科学与技术, 2021, 10(2): 738-743. DOI: 10.19799/j.cnki.2095-4239.2020.0395.
|
|
REN P, WANG S L, HE M F, et al. State of health estimation of Li-ion battery based on dual calibration of internal resistance increasing and capacity fading[J]. Energy Storage Science and Technology, 2021, 10(2): 738-743. DOI: 10.19799/j.cnki.2095-4239.2020.0395.
|
[12] |
ZHOU L, ZHENG Y J, OUYANG M G, et al. A study on parameter variation effects on battery packs for electric vehicles[J]. Journal of Power Sources, 2017, 364: 242-252. DOI: 10.1016/j.jpowsour. 2017.08.033.
|
[13] |
PAUL S, DIEGELMANN C, KABZA H. Analysis of ageing inhomogeneities in lithium-ion battery systems[J]. Journal of Power Sources, 2013, 239: 642-650. DOI: 10.1016/j.jpowsour. 2013.01.068.
|
[14] |
ZHANG Y L, XU J, YANG S C, et al. Battery module capacity fade model based on cell voltage inconsistency and probability distribution[J]. Advances in Mechanical Engineering, 2017, 9(9): 168781401773075. DOI: 10.1177/1687814017730757.
|
[15] |
陈国贺, 吕培召, 李孟涵, 等. 锂离子电池热失控传播特性及其抑制策略研究进展[J]. 储能科学与技术, 2024, 13(7): 2470-2482. DOI: 10.19799/j.cnki.2095-4239.2024.0091.
|
|
CHEN G H, LYU P Z, LI M H, et al. Research progress on thermal runaway propagation characteristics of lithium-ion batteries and its inhibiting strategies[J]. Energy Storage Science and Technology, 2024, 13(7): 2470-2482. DOI: 10.19799/j.cnki. 2095-4239.2024.0091.
|
[16] |
NASERI F, SCHALTZ E, STROE D I, et al. An enhanced equivalent circuit model with real-time parameter identification for battery state-of-charge estimation[J]. IEEE Transactions on Industrial Electronics, 2021, 69(4): 3743-3751. DOI: 10.1109/TIE.2021.3071679.
|
[17] |
HE H W, XIONG R, GUO H Q, et al. Comparison study on the battery models used for the energy management of batteries in electric vehicles[J]. Energy Conversion and Management, 2012, 64: 113-121. DOI: 10.1016/j.enconman.2012.04.014.
|
[18] |
CHANG G F, CUI X, LI Y Y, et al. Effects of reciprocating liquid flow battery thermal management system on thermal characteristics and uniformity of large lithium-ion battery pack[J]. International Journal of Energy Research, 2020, 44(8): 6383-6395. DOI: 10.1002/er.5363.
|
[19] |
BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12. DOI: 10.1149/1.2113792.
|
[20] |
WANG Y Q, ZHAO Y J, ZHOU S Y, et al. Impact of individual cell parameter difference on the performance of series-parallel battery packs[J]. ACS Omega, 2023, 8(11): 10512-10524. DOI: 10.1021/acsomega.3c00266.
|
[21] |
YU Q Q, HUANG Y K, TANG A H, et al. OCV-SOC-temperature relationship construction and state of charge estimation for a series-parallel lithium-ion battery pack[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(6): 6362-6371. DOI: 10.1109/TITS.2023.3252164.
|
[22] |
WANG B, JI C W, WANG S F, et al. Study of non-uniform temperature and discharging distribution for lithium-ion battery modules in series and parallel connection[J]. Applied Thermal Engineering, 2020, 168: 114831. DOI: 10.1016/j.applthermaleng. 2019.114831.
|
[23] |
FAN X Y, ZHANG W G, WANG Z G, et al. Simplified battery pack modeling considering inconsistency and evolution of current distribution[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(1): 630-639. DOI: 10.1109/TITS.2020.3010567.
|
[24] |
ZHENG Y J, OUYANG M G, LU L G, et al. Cell state-of-charge inconsistency estimation for LiFePO4 battery pack in hybrid electric vehicles using mean-difference model[J]. Applied Energy, 2013, 111: 571-580. DOI: 10.1016/j.apenergy.2013.05.048.
|