储能科学与技术 ›› 2025, Vol. 14 ›› Issue (5): 2081-2097.doi: 10.19799/j.cnki.2095-4239.2025.0046

• 储能测试与评价 • 上一篇    下一篇

基于Soft-DTW算法与多源特征融合的实车动力电池SOH估算

丁萍1(), 李涛涛1, 郑林锋2, 吴伟雄1()   

  1. 1.暨南大学能源电力研究中心,广东 珠海 519070
    2.深圳技术大学中德智能制造学院,广东 深圳 518118
  • 收稿日期:2025-01-10 修回日期:2025-03-06 出版日期:2025-05-28 发布日期:2025-05-21
  • 通讯作者: 吴伟雄 E-mail:yeeurl@163.com;weixiongwu@jnu.edu.cn
  • 作者简介:丁萍(2000—),女,硕士,研究方向为基于数据驱动的电池组状态估算,E-mail:yeeurl@163.com
  • 基金资助:
    国家自然科学基金(52476200);广东省基础与应用基础研究基金(2024A1515030124);南方电网公司科技项目资助(GDKJXM20230246(030100KC23020017)

SOH estimation of real-world power batteries based on Soft-DTW algorithm and multisource reature fusion

Ping DING1(), Taotao LI1, Linfeng ZHENG2, Weixiong WU1()   

  1. 1.Energy and Electricity Research Center, Jinan University, Zhuhai 519070, Guangdong, China
    2.Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
  • Received:2025-01-10 Revised:2025-03-06 Online:2025-05-28 Published:2025-05-21
  • Contact: Weixiong WU E-mail:yeeurl@163.com;weixiongwu@jnu.edu.cn

摘要:

电动汽车动力电池的健康状态是保障其高效运行与延长使用寿命的关键因素。然而,由于电动汽车在实际使用中充电模式复杂多变,单次充放电循环的采样间隔大且伴随部分特征信息缺失,导致动力电池SOH的精准评估面临极大挑战。为此,本研究针对实车运行数据提出了一种基于软-动态时间规整(soft-dynamic time warping, Soft-DTW)算法与多源特征融合的SOH估算模型。首先,通过Soft-DTW算法对每周充电片段的容量增量(incremental capacity, IC)曲线进行动态参数融合,随后提取每周总体IC融合特征,并构建融合IC曲线特征与统计学特征的多源特征集。基于此,提出基于双向门控循环单元-极端梯度提升(bidirectional gated recurrent unit-extreme gradient boosting, BiGRU-XGBoost)实车SOH估算模型,该模型在由20辆电动汽车组成的实车数据集上进行了K折交叉验证,结果表明提出的SOH估算方法均方根误差在1.21%以内,均绝对误差低于0.9%。同时与GRU-XGBoost、LSTM进行多模型对比实验,均方根误差降低了36.1%和47.6%,验证了BiGRU-XGBoost模型更强的稳健性和泛化能力。

关键词: 电动汽车, 健康状态估计, 容量增量

Abstract:

The State of Health (SOH) of electric vehicle (EV) power batteries is a critical factor in ensuring efficient operation and extending service life. However, accurately assessing SOH is challenging owing to the complex and variable charging patterns in real-world EV usage, large sampling intervals in individual charge-discharge cycles, and missing feature data. To address these challenges, this study proposes a multisource feature fusion method for SOH estimation method using real-world vehicle operation data. The proposed method utilizes the soft dynamic time warping (Soft-DTW) algorithm to dynamically fuse parameters from weekly charging segment incremental capacity (IC) curves, generating an overall weekly IC fusion feature. By integrating these fused IC curve features with statistical features, a multisource feature set is constructed. Furthermore, a real-world SOH estimation model based on the Bidirectional Gated Recurrent Unit-eXtreme Gradient Boosting (BiGRU-XGBoost) is proposed. The model was tested using a real-world dataset comprising 20 EVs. K-fold cross-validation results demonstrates that the proposed SOH estimation method achieves a root mean square error (RMSE) within 1.21% and a mean absolute error (MAE) below 0.9%. Comparative experiments with GRU-XGBoost and long short-term memory (LSTM) models further validate the superiority of the BiGRU-XGBoost model, showing 36.1% and 47.6% reductions in RMSE. These findings highlight the enhanced robustness and generalization capabilities of the BiGRU-XGBoost model.

Key words: electric vehicle, state of health estimation, incremental capacity

中图分类号: