储能科学与技术 ›› 2025, Vol. 14 ›› Issue (4): 1631-1644.doi: 10.19799/j.cnki.2095-4239.2024.1025

• 储能测试与评价 • 上一篇    下一篇

强干扰下基于VMD三次分解的锂电池健康状态估计方法

蔡志端1,3(), 张吴哲2, 吴成傲2, 童嘉阳1   

  1. 1.湖州学院智能制造学院
    2.湖州师范学院工学院
    3.湖州市绿色能源材料与电池梯次利用重点实验室,浙江 湖州 313000
  • 收稿日期:2024-11-05 修回日期:2024-11-30 出版日期:2025-04-28 发布日期:2025-05-20
  • 通讯作者: 蔡志端 E-mail:caizhiduan@zjhzu.edu.cn
  • 作者简介:蔡志端(1978—),男,副教授,研究方向为锂离子动力电池健康管理,E-mail:caizhiduan@zjhzu.edu.cn
  • 基金资助:
    浙江省湖州市基础公益研究计划项目(2022gz02)

Lithium battery health state estimation method based on triple VMD decomposition under strong interference

Zhiduan CAI1,3(), Wuzhe ZHANG2, Chengao WU2, Jiayang TONG1   

  1. 1.School of Intelligent Manufacturing, Huzhou University
    2.School of Engineering, Huzhou University
    3.Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, Huzhou 313000, Zhejiang, China
  • Received:2024-11-05 Revised:2024-11-30 Online:2025-04-28 Published:2025-05-20
  • Contact: Zhiduan CAI E-mail:caizhiduan@zjhzu.edu.cn

摘要:

针对传感器测量噪声或工况导致的电流突变对锂电池容量增量曲线造成的强干扰而引发的电池健康状态评估不准确的问题,本工作创新地提出了一种基于三次变分模态分解的解决方法,以提高电池健康状态评估的准确性。首先,通过双重变分模态分解技术,对受干扰影响的容量增量曲线进行去噪处理,干扰源包括全域电压噪声、局部电压噪声以及局部电流突变噪声等,并对去噪之后得到的曲线提取峰值特征量;其次,为进一步提升峰值特征量表征电池健康状态的能力,对所提取的峰值特征量再次使用变分模态分解,并依据皮尔逊相关性分析,将模态分量重构为主退化趋势和波动趋势两个分量,主退化趋势分量反映了特征量随着时间推移的整体衰减情况,而波动趋势则捕捉了特征量较短时间内的变化特性,两者共同作为健康特征用于锂电池的健康状态估计;最后,基于NASA数据集,采用长短期记忆网络等算法进行电池健康估计验证实验。实验结果表明,本工作所提出的方法在强干扰环境下对锂电池健康状态估计有效,且能达到良好的估计精度与优势。

关键词: 容量增量, 变分模态双重分解, 噪声, 主退化趋势, 波动趋势, 长短期记忆网络

Abstract:

To address the issue of inaccurate battery health state estimation caused by strong interference in the lithium battery capacity increment curve, such as sensor measurement noise or varying operational conditions, this paper proposes an innovative solution using triple variational mode decomposition (VMD) to improve the accuracy of state of health (SOH) estimation. First, a dual VMD technique is utilized to denoise the distorted battery capacity increment curves. These interference sources include global voltage noise, local voltage noise, and local current mutations. Peak features were then extracted from the denoised curves. To further enhance the ability of these peak features to represent the battery's health state, a second VMD decomposition is applied to the extracted peak features. Using Pearson correlation analysis, the mode components are reconstructed into two sub-components: the main degradation trend that reflects the overall attenuation of the feature over time, and the fluctuation trend that captures short-term variations in the feature. These two components are used together as health indicators for SOH estimation. Finally, based on the NASA dataset, battery SOH estimation validation experiments were conducted using algorithms such as long short-term memory networks. The experimental results show that the proposed method effectively estimates the lithium-ion battery SOH under strong interference conditions, achieving high estimation accuracy and demonstrating significant advantages.

Key words: capacity increment, variational mode decomposition, noise, primary degradation trend, fluctuation trend, long short term memory network

中图分类号: