1 |
ROMAN D, SAXENA S, ROBU V, et al. Machine learning pipeline for battery state-of-health estimation[J]. Nature Machine Intelligence, 2021, 3(5): 447-456. DOI: 10.1038/s42256-021-00312-3.
|
2 |
胡晓亚, 郭永芳, 张若可. 锂离子电池健康状态估计方法研究综述[J]. 电源学报, 2022, 20(1): 126-133. DOI: 10.13234/j.issn.2095-2805.2022.1.126.
|
|
HU X Y, GUO Y F, ZHANG R K. Review of state-of-health estimation methods for lithium-ion battery[J]. Journal of Power Supply, 2022, 20(1): 126-133. DOI: 10.13234/j.issn.2095-2805. 2022.1.126.
|
3 |
王琛, 闵永军. 基于容量增量曲线与GWO-GPR的锂离子电池SOH估计[J]. 储能科学与技术, 2023, 12(11): 3508-3518. DOI: 10.19799/j.cnki.2095-4239.2023.0458.
|
|
WANG C, MIN Y J. SOH estimation of lithium-ion batteries based on capacity increment curve and GWO-GPR[J]. Energy Storage Science and Technology, 2023, 12(11): 3508-3518. DOI: 10. 19799/j.cnki.2095-4239.2023.0458.
|
4 |
LIU F, SHAO C, SU S, et al. An online joint critical state estimator based on a novel equivalent circuit model [J]. Control and decision making, 2023, 38(6): 1620-1628.
|
5 |
XU Z C, WANG J, LUND P D, et al. Co-estimating the state of charge and health of lithium batteries through combining a minimalist electrochemical model and an equivalent circuit model[J]. Energy, 2022, 240: 122815. DOI: 10.1016/j.energy. 2021. 122815.
|
6 |
GAO J H, ZHU Y Z. Study on the state estimation of power lithium batteries based on a new power supply model[J]. Journal of Henan Normal University: Natural Science Edition, 2019, 47(1): 58-61, 92.
|
7 |
周雅夫, 孙宵宵, 黄立建, 等. 面向全生命周期的锂电池健康状态估计[J]. 哈尔滨工业大学学报, 2021, 53(1): 55-62. DOI: 10.11918/202003049.
|
|
ZHOU Y F, SUN X X, HUANG L J, et al. Life cycle-oriented health state estimation of lithium batteries[J]. Journal of Harbin Institute of Technology, 2021, 53(1): 55-62. DOI: 10.11918/202003049.
|
8 |
柯学, 洪华伟, 郑鹏, 等. 基于多时间尺度建模自动特征提取和通道注意力机制的锂离子电池健康状态估计[J]. 储能科学与技术, 2024, 13(9): 3059-3071. DOI: 10.19799/j.cnki.2095-4239.2024.0627.
|
|
KE X, HONG H W, ZHENG P, et al. Estimating lithium-ion battery health using automatic feature extraction and channel attention mechanisms for multi-timescale modeling[J]. Energy Storage Science and Technology, 2024, 13(9): 3059-3071. DOI: 10.19799/j.cnki.2095-4239.2024.0627.
|
9 |
LI Y, ABDEL-MONEM M, GOPALAKRISHNAN R, et al. A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter[J]. Journal of Power Sources, 2018, 373: 40-53. DOI: 10.1016/j.jpowsour.2017.10.092.
|
10 |
BERECIBAR M, GARMENDIA M, GANDIAGA I, et al. State of health estimation algorithm of LiFePO4 battery packs based on differential voltage curves for battery management system application[J]. Energy, 2016, 103: 784-796. DOI: 10.1016/j.energy.2016.02.163.
|
11 |
ZHOU R M, ZHU R, HUANG C G, et al. State of health estimation for fast-charging lithium-ion battery based on incremental capacity analysis[J]. Journal of Energy Storage, 2022, 51: 104560. DOI: 10.1016/j.est.2022.104560.
|
12 |
PAN W J, LUO X S, ZHU M T, et al. A health indicator extraction and optimization for capacity estimation of Li-ion battery using incremental capacity curves[J]. Journal of Energy Storage, 2021, 42: 103072. DOI: 10.1016/j.est.2021.103072.
|
13 |
GISMERO A, NØRREGAARD K, JOHNSEN B, et al. Electric vehicle battery state of health estimation using Incremental Capacity Analysis[J]. Journal of Energy Storage, 2023, 64: 107110. DOI: 10.1016/j.est.2023.107110.
|
14 |
ZHOU Z K, DUAN B, KANG Y Z, et al. Practical state of health estimation for LiFePO4 batteries based on Gaussian mixture regression and incremental capacity analysis[J]. IEEE Transactions on Industrial Electronics, 2023, 70(3): 2576-2585. DOI: 10.1109/TIE.2022.3167142.
|
15 |
LI X Y, WANG Z P, YAN J Y. Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression[J]. Journal of Power Sources, 2019, 421: 56-67. DOI: 10.1016/j.jpowsour.2019.03.008.
|
16 |
AHMEID M, MUHAMMAD M, LAMBERT S, et al. A rapid capacity evaluation of retired electric vehicle battery modules using partial discharge test[J]. Journal of Energy Storage, 2022, 50: 104562. DOI: 10.1016/j.est.2022.104562.
|
17 |
LI X Y, YUAN C G, LI X H, et al. State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression[J]. Energy, 2020, 190: 116467. DOI: 10.1016/j.energy.2019.116467.
|
18 |
ZHANG Y J, LIU Y J, WANG J, et al. State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression[J]. Energy, 2022, 239: 121986. DOI: 10.1016/j.energy.2021.121986.
|
19 |
SUN H L, YANG D F, DU J X, et al. Prediction of Li-ion battery state of health based on data-driven algorithm[J]. Energy Reports, 2022, 8: 442-449. DOI: 10.1016/j.egyr.2022.11.134.
|
20 |
WANG G F, CUI N X, LI C L, et al. A state-of-health estimation method based on incremental capacity analysis for Li-ion battery considering charging/discharging rate[J]. Journal of Energy Storage, 2023, 73: 109010. DOI: 10.1016/j.est.2023.109010.
|
21 |
李嘉波, 王志璇, 田迪, 等. 变模态分解下SSA-LSTM组合的锂离子电池剩余使用寿命预测方法[J]. 储能科学与技术, 2025, 14(2): 659-670. DOI: 10.19799/j.cnki.2095-4239.2024.0732.
|
|
LI J B, WANG Z X, TIAN D, et al. Prediction method for remaining service life of lithium batteries using SSA-LSTM combination under variable mode decomposition[J]. Energy Storage Science and Technology, 2025, 14(2): 659-670. DOI: 10. 19799/j.cnki.2095-4239.2024.0732.
|