1 |
王海波, 林虹, 宋文龙, 等. 2024年上半年中国电池行业运行情况[J]. 电池, 2024, 54(4): 445-449. DOI: 10.19535/j.1001-1579. 2024.04.002.
|
|
WANG H B, LIN H, SONG W L, et al. Operation of China's battery industry in the first half of 2024[J]. Battery Bimonthly, 2024, 54(4): 445-449. DOI: 10.19535/j.1001-1579.2024.04.002.
|
2 |
陈素华, 白莹. 锂离子动力电池热失控机理及热管理技术研究进展[J]. 中国科学基金, 2023, 37(2): 187-198. DOI: 10.16262/j.cnki. 1000-8217.2023.02.005.
|
|
CHEN S H, BAI Y. Thermal runway mechanism and research progress on thermal management of lithium-ion power batteries[J]. Bulletin of National Natural Science Foundation of China, 2023, 37(2): 187-198. DOI: 10.16262/j.cnki.1000-8217.2023. 02.005.
|
3 |
NUHIC A, TERZIMEHIC T, SOCZKA-GUTH T, et al. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods[J]. Journal of Power Sources, 2013, 239: 680-688. DOI: 10.1016/j.jpowsour.2012. 11.146.
|
4 |
YOU K S, QIU G Q, GU Y K. Remaining useful life prediction of lithium-ion batteries using EM-PF-SSA-SVR with gamma stochastic process[J]. Measurement Science and Technology, 2024, 35(1): 015015. DOI: 10.1088/1361-6501/acfbef.
|
5 |
CHEN L, ZHANG Y, ZHENG Y, et al. Remaining useful life prediction of lithium-ion battery with optimal input sequence selection and error compensation[J]. Neurocomputing, 2020, 414: 245-254. DOI: 10.1016/j.neucom.2020.07.081.
|
6 |
LYU Z Q, WANG G, GAO R J. Synchronous state of health estimation and remaining useful lifetime prediction of Li-Ion battery through optimized relevance vector machine framework[J]. Energy, 2022, 251: 123852. DOI: 10.1016/j.energy.2022. 123852.
|
7 |
GUO W, HE M. An optimal relevance vector machine with a modified degradation model for remaining useful lifetime prediction of lithium-ion batteries[J]. Applied Soft Computing, 2022, 124: 108967. DOI: 10.1016/j.asoc.2022.108967.
|
8 |
VENUGOPAL P, SHANKAR S S, JEBAKUMAR C P, et al. Analysis of optimal machine learning approach for battery life estimation of Li-ion cell[J]. IEEE Access, 2021, 9: 159616-159626. DOI: 10.1109/ACCESS.2021.3130994.
|
9 |
PARK K, CHOI Y, CHOI W J, et al. LSTM-based battery remaining useful life prediction with multi-channel charging profiles[J]. IEEE Access, 2020, 8: 20786-20798. DOI: 10.1109/ACCESS.2020.2968939.
|
10 |
XIE Q L, LIU R C, HUANG J H, et al. Residual life prediction of lithium-ion batteries based on data preprocessing and a priori knowledge-assisted CNN-LSTM[J]. Energy, 2023, 281: 128232. DOI: 10.1016/j.energy.2023.128232.
|
11 |
HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. DOI: 10.1098/rspa.1998.0193.
|
12 |
WU Z H, HUANG N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. DOI: 10.1142/s1793536909000047.
|
13 |
BREIMAN L. Random forests[J]. Machine learning, 2001, 45: 5-32.
|
14 |
YU Y, SI X S, HU C H, et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 2019, 31(7): 1235-1270. DOI: 10.1162/neco_a_01199.
|