[1] |
LI C M, LI X M, LIU G Q, et al. Microcrack arrays in dense graphene films for fast-ion-diffusion supercapacitors[J]. Small, 2023, 19(33): 2301533. DOI: 10.1002/smll.202301533.
|
[2] |
WU M M, SUN K, HE J F, et al. Hierarchically 3D fibrous electrode for high-performance flexible AC-line filtering in fluctuating energy harvesters[J]. Advanced Functional Materials, 2023, 33(45): 2305039. DOI: 10.1002/adfm.202305039.
|
[3] |
ZHANG C G, JIAO X, WANG Y Y, et al. An ultra-low-temperature alternating current filter[J]. Small, 2024, 20(2): 2305949. DOI: 10.1002/smll.202305949.
|
[4] |
LI Z, XU M H, XIA Y E, et al. High-frequency supercapacitors surpassing dynamic limit of electrical double layer effects[J]. Nature Communications, 2025, 16: 3704. DOI: 10.1038/s41467-025-59015-7.
|
[5] |
LI Q, SUN S X, SMITH A D, et al. Compact and low loss electrochemical capacitors using a graphite/carbon nanotube hybrid material for miniaturized systems[J]. Journal of Power Sources, 2019, 412: 374-383. DOI: 10.1016/j.jpowsour. 2018. 11.052.
|
[6] |
HAN F M, QIAN O, MENG G W, et al. Structurally integrated 3D carbon tube grid-based high-performance filter capacitor[J]. Science, 2022, 377(6609): 1004-1007. DOI: 10.1126/science.abh4380.
|
[7] |
SANTHOSH N M, UPADHYAY K K, FILIPIČ G, et al. Widening the limit of capacitance at high frequency for AC line-filtering applications using aqueous carbon-based supercapacitors[J]. Carbon, 2023, 203: 686-694. DOI: 10.1016/j.carbon.2022.12.026.
|
[8] |
SUN Q J, CAO Z, MA Z, et al. Dipole-dipole interaction induced electrolyte interfacial model to stabilize antimony anode for high-safety lithium-ion batteries[J]. ACS Energy Letters, 2022, 7(10): 3545-3556. DOI: 10.1021/acsenergylett.2c01408.
|
[9] |
FORSE A C, GRIFFIN J M, MERLET C, et al. Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy[J]. Nature Energy, 2017, 2: 16216. DOI: 10.1038/nenergy.2016.216.
|
[10] |
YU J H, YU C, SONG X D, et al. Microscopic-level insights into solvation chemistry for nonsolvating diluents enabling high-voltage/rate aqueous supercapacitors[J]. Journal of the American Chemical Society, 2023, 145(25): 13828-13838. DOI: 10.1021/jacs.3c02754.
|
[11] |
ZHANG K, ZHOU G H, FANG T M, et al. Different shapes based on ionic liquid leading to a two-stage discharge process[J]. Journal of Materials Chemistry A, 2022, 10(14): 7684-7693. DOI: 10.1039/D2TA00583B.
|
[12] |
LASIA A. Impedance of porous electrodes[J]. Journal of Electroanalytical Chemistry, 1995, 397(1/2): 27-33. DOI: 10.1016/0022-0728(95)04177-5.
|
[13] |
PAASCH G, MICKA K, GERSDORF P. Theory of the electrochemical impedance of macrohomogeneous porous electrodes[J]. Electrochimica Acta, 1993, 38(18): 2653-2662. DOI: 10.1016/0013-4686(93)85083-B.
|
[14] |
BISQUERT J, GARCIA-BELMONTE G, FABREGAT-SANTIAGO F, et al. Anomalous transport effects in the impedance of porous film electrodes[J]. Electrochemistry Communications, 1999, 1(9): 429-435. DOI: 10.1016/S1388-2481(99)00084-3.
|
[15] |
GABERŠČEK M. Understanding Li-based battery materials via electrochemical impedance spectroscopy[J]. Nature Communications, 2021, 12: 6513. DOI: 10.1038/s41467-021-26894-5.
|
[16] |
GU C Y, YIN L, LI S, et al. Differential capacitance of ionic liquid and mixture with organic solvent[J]. Electrochimica Acta, 2021, 367: 137517. DOI: 10.1016/j.electacta.2020.137517.
|
[17] |
ZHANG Q, LIU X H, YIN L, et al. Electrochemical impedance spectroscopy on the capacitance of ionic liquid-acetonitrile electrolytes[J]. Electrochimica Acta, 2018, 270: 352-362. DOI: 10. 1016/j.electacta.2018.03.059.
|
[18] |
DRÜSCHLER M, HUBER B, ROLING B. On capacitive processes at the interface between 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate and Au(111)[J]. The Journal of Physical Chemistry C, 2011, 115(14): 6802-6808. DOI: 10.1021/jp200395j.
|
[19] |
SANGORO J, COSBY T, KREMER F. Rotational and translational diffusion in ionic liquids[M]. Cham: Springer International Publishing, 2016: 29-51.
|
[20] |
DYRE J C, SCHRØDER T B. Universality of AC conduction in disordered solids[J]. Reviews of Modern Physics, 2000, 72(3): 873-892. DOI: 10.1103/RevModPhys.72.873.
|
[21] |
SCHöNHALS A, KREMER F. Analysis of dielectric spectra[M]. Berlin: Springer Berlin Heidelberg, 2003: 59-98.
|
[22] |
ROLING B, DRÜSCHLER M, HUBER B. Slow and fast capacitive process taking place at the ionic liquid/electrode interface[J]. Faraday Discussions, 2012, 154: 303-311. DOI: 10.1039/C1FD 00088H.
|
[23] |
BALDELLI S. Surface structure at the ionic liquid-electrified metal interface[J]. Accounts of Chemical Research, 2008, 41(3): 421-431. DOI: 10.1021/ar700185h.
|
[24] |
ANDERSON E, GROZOVSKI V, SIINOR L, et al. Influence of the electrode potential and in situ STM scanning conditions on the phase boundary structure of the single crystal Bi(111)|1-butyl-4-methylpyridinium tetrafluoroborate interface[J]. Journal of Electroanalytical Chemistry, 2013, 709: 46-56. DOI: 10.1016/j.jelechem.2013.10.004.
|
[25] |
PAJKOSSY T, KOLB D M. The interfacial capacitance of Au(100) in an ionic liquid, 1-butyl-3-methyl-imidazolium hexafluorophosphate[J]. Electrochemistry Communications, 2011, 13(3): 284-286. DOI: 10.1016/j.elecom.2011.01.004.
|
[26] |
YIN L, HUANG Y K, CHEN H X, et al. A mean-field theory on the differential capacitance of asymmetric ionic liquid electrolytes. II. Accounts of ionic interactions[J]. Physical Chemistry Chemical Physics, 2018, 20(26): 17606-17614. DOI: 10.1039/C8CP02943A.
|
[27] |
GOODWIN Z A H, FENG G, KORNYSHEV A A. Mean-field theory of electrical double layer in ionic liquids with account of short-range correlations[J]. Electrochimica Acta, 2017, 225: 190-197. DOI: 10.1016/j.electacta.2016.12.092.
|
[28] |
KORNYSHEV A A. Double-layer in ionic liquids: Paradigm change?[J]. The Journal of Physical Chemistry B, 2007, 111(20): 5545-5557. DOI: 10.1021/jp067857o.
|
[29] |
KILIC M S, BAZANT M Z, AJDARI A. Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2007, 75(2 Pt 1): 021503. DOI: 10.1103/PhysRevE.75.021503.
|