储能科学与技术 ›› 2025, Vol. 14 ›› Issue (11): 4225-4236.doi: 10.19799/j.cnki.2095-4239.2025.0590
高林娜1,2(
), 钟桂云1,2, 张艳中1,2, 刘慧1,2(
)
收稿日期:2025-06-24
修回日期:2025-07-08
出版日期:2025-11-28
发布日期:2025-11-24
通讯作者:
刘慧
E-mail:gaolinna@sinochem.com;liuhui8@ sinochem.com
作者简介:高林娜(1991—),女,硕士,工程师,主要从事含氟聚合物加工与应用,E-mail:gaolinna@sinochem.com;
基金资助:
Linna GAO1,2(
), Guiyun ZHONG1,2, Yanzhong ZHANG1,2, Hui LIU1,2(
)
Received:2025-06-24
Revised:2025-07-08
Online:2025-11-28
Published:2025-11-24
Contact:
Hui LIU
E-mail:gaolinna@sinochem.com;liuhui8@ sinochem.com
摘要:
硫化物基全固态锂离子电池(ASSLBs)因有望解决传统锂电池有限能量密度和安全性的问题,受到了行业的广泛关注。这主要依赖于硫化物固态电解质(SEs)优异的室温离子电导率(10-3~10-2 S/cm)和良好的机械柔性。然而,为了满足电解质的机械强度而制造厚电解质膜,为了降低界面阻抗制备硫化物材料与正极复合膜,导致了全固态电池的实际能量低于理论值。由此可以看出,硫化物固态电解质膜对全固态电池的性能至关重要,制备超薄、强韧的硫化物固态电解质薄膜(SSEs)是解决该问题的关键之一。本文通过对近年文献的探讨,先简要分析了硫化物固态电解质膜的制备标准和挑战,接着综述了硫化物固态电解质膜的制备技术,详细介绍了各种方法的优缺点。制备技术主要分为湿法和干法,湿法工艺包括冷/热压、流延法、渗透法、3D打印等;干法工艺包括粉末压缩和黏结剂原纤化。流延法和渗透法都能够进行大规模薄膜制备,可以与传统液态锂电池电极工业产线相结合。黏结剂原纤化因无溶剂,大大降低了环境危害和制造成本。最后,对硫化物固态电解质膜的未来发展方向进行展望。
中图分类号:
高林娜, 钟桂云, 张艳中, 刘慧. 硫化物固态电解质膜制备技术研究进展[J]. 储能科学与技术, 2025, 14(11): 4225-4236.
Linna GAO, Guiyun ZHONG, Yanzhong ZHANG, Hui LIU. Research progress in fabrication techniques of sulfide-based solid electrolyte membranes[J]. Energy Storage Science and Technology, 2025, 14(11): 4225-4236.
表2
流延法制备硫化物固态电解质膜总结"
| 硫化物 | 溶剂 | 黏结剂 | 厚度/μm | 离子电导率/(mS/cm) | 参考文献 |
|---|---|---|---|---|---|
| Li6PS5Cl | 无水乙腈 | PEGDA-DMAEMA-LiTFSI聚合物 | 40 | 1.23 | [ |
| Li5.4PS4.4Cl1.6 | 异丁酸异丁酯基溶剂 | M-PVDF | 26 | 2 | [ |
| Li9.88GEP1.96Sb0.04S11.88Cl0.12 | 甲苯 | 聚甲基丙烯酸甲酯/丙烯酸正丁酯 | 8 | 1.9 | [ |
| Li6PS5Cl0.5Br0.5 | 丁酸己酯-二溴甲烷 | NBR-LiTFSI | 100 | — | [ |
| Li6PS5Cl | 二甲苯和异丁酸异丁酯 | 丙烯酸脂类 | 40 | 1.31 | [ |
| Li6PS5Cl | 二溴乙烷 | NBR-Li(G3)TFSI | 70 | 3.3 | [ |
| Li6PS5Cl | 无水乙腈 | PEO | 65 | 0.28 | [ |
| 75Li2S·25P2S5 | 苯甲醚 | 无 | 60~75 | 0.52 | [ |
| Li6PS5Cl | 甲苯-异丁酸异丁酯 | NBR | 50 | 1.12 | [ |
| Li6PS5Cl | 甲苯 | 两亲性乙基纤维素 | 47 | 1.65 | [ |
| [1] | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. DOI: 10.1038/35104644. |
| [2] | WANG X T, GU Z Y, ANG E H, et al. Prospects for managing end-of-life lithium-ion batteries: Present and future[J]. Interdisciplinary Materials, 2022, 1(3): 417-433. DOI: 10.1002/idm2.12041. |
| [3] | NITTA N, WU F X, LEE J T, et al. Li-ion battery materials: Present and future[J]. Materials Today, 2015, 18(5): 252-264. DOI: 10.1016/j.mattod.2014.10.040. |
| [4] | CHOI N S, CHEN Z H, FREUNBERGER S A, et al. Challenges facing lithium batteries and electrical double-layer capacitors[J]. Angewandte Chemie International Edition, 2012, 51(40): 9994-10024. DOI: 10.1002/anie.201201429. |
| [5] | XU X L, HUI K S, HUI K N, et al. Recent advances in the interface design of solid-state electrolytes for solid-state energy storage devices[J]. Materials Horizons, 2020, 7(5): 1246-1278. DOI: 10.1039/C9MH01701A. |
| [6] | JANEK J, ZEIER W G. Challenges in speeding up solid-state battery development[J]. Nature Energy, 2023, 8(3): 230-240. DOI: 10.1038/s41560-023-01208-9. |
| [7] | WANG C Y, WANG C, LI M N, et al. Design of thin solid-state electrolyte films for safe and energy-dense batteries[J]. Materials Today, 2024, 72: 235-254. DOI: 10.1016/j.mattod.2023.11.016. |
| [8] | XI G, XIAO M, WANG S J, et al. Polymer-based solid electrolytes: Material selection, design, and application[J]. Advanced Functional Materials, 2021, 31(9): 2007598. DOI: 10. 1002/adfm.202007598. |
| [9] | REN Y Y, DANNER T, MOY A, et al. Oxide-based solid-state batteries: A perspective on composite cathode architecture[J]. Advanced Energy Materials, 2023, 13(1): 2201939. DOI: 10.1002/aenm.202201939. |
| [10] | LI X N, LIANG J W, YANG X F, et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries[J]. Energy & Environmental Science, 2020, 13(5): 1429-1461. DOI: 10.1039/C9EE03828K. |
| [11] | WU J H, LIU S F, HAN F D, et al. Lithium/sulfide all-solid-state batteries using sulfide electrolytes[J]. Advanced Materials, 2021, 33(6): 2000751. DOI: 10.1002/adma.202000751. |
| [12] | CAO D, ZHAO Y, SUN X, et al. Defect engineering in perovskite oxides for enhanced electrocatalytic oxygen evolution [J]. ACS Energy Letters, 2020, 5(11): 3468-3475. |
| [13] | FAN L Z, HE H, NAN C W, et al. Flexible composite solid electrolytes: A paradigm shift in energy storage technology [J]. Nature Reviews Materials, 2021, 6 (12): 1003. |
| [14] | LEE J, LEE T, CHAR K, et al. Emerging strategies in nanoscale catalyst design for sustainable energy conversion[J]. Accounts of Chemical Research, 2021, 54 (15): 3390. |
| [15] | PARK K H, BAI Q, KIM D H, et al. Solidelectrolyte design strategies for lithium batteries[J]. Advanced Energy Materials, 2018, 8(18): 1800035. |
| [16] | CHEN Y, XU L, YANG X, et al. Nanocomposite design for solid-state lithium metal batteries: Progress, challenge and prospects[J]. Advanced Nanocomposites, 2024, 1(1): 120-143. DOI: 10.1016/j.adna.2024.03.002. |
| [17] | ZHANG Z H, WU L P, ZHOU D, et al. Flexible sulfide electrolyte thin membrane with ultrahigh ionic conductivity for all-solid-state lithium batteries[J]. Nano Letters, 2021, 21(12): 5233-5239. DOI: 10.1021/acs.nanolett.1c01344. |
| [18] | ZHAO X L, XIANG P, WU J H, et al. Toluene tolerated Li9.88GeP1.96Sb0.04S11.88Cl0.12 solid electrolyte toward ultrathin membranes for all-solid-state lithium batteries[J]. Nano Letters, 2023, 23(1): 227-234. DOI: 10.1021/acs.nanolett.2c04140. |
| [19] | LIU H, LIANG Y H, WANG C, et al. Priority and prospect of sulfide-based solid-electrolyte membrane[J]. Advanced Materials, 2023, 35(50): 2206013. DOI: 10.1002/adma.202206013. |
| [20] | MAULER L, DUFFNER F, ZEIER W G, et al. Cost analysis of solid-state battery manufacturing[J]. Energy & Environmental Science, 2021, 14(9): 4712-4725. |
| [21] | NIKODIMOS Y, HUANG C J, TAKLU B W, et al. Polymer electrolytes for high-energy lithium batteries[J]. Energy & Environmental Science, 2022, 15(3): 991-1008. |
| [22] | HUANG K J, CEDER G, OLIVETTI E A. Data-driven discovery of solid electrolytes[J]. Joule, 2021, 5(3): 564-578. |
| [23] | WANG S, ZHANG X, LIU S J, et al. High-conductivity free-standing Li6PS5Cl/poly(vinylidene difluoride) composite solid electrolyte membranes for lithium-ion batteries[J]. Journal of Materiomics, 2020, 6(1): 70-76. DOI: 10.1016/j.jmat.2019.12.010. |
| [24] | LIU G Z, SHI J M, ZHU M T, et al. Ultra-thin free-standing sulfide solid electrolyte film for cell-level high energy density all-solid-state lithium batteries[J]. Energy Storage Materials, 2021, 38: 249-254. DOI: 10.1016/j.ensm.2021.03.017. |
| [25] | CAO D X, LI Q, SUN X, et al. Amphipathic binder integrating ultrathin and highly ion-conductive sulfide membrane for cell-level high-energy-density all-solid-state batteries[J]. Advanced Materials, 2021, 33(52): 2105505. DOI: 10.1002/adma.202105505. |
| [26] | ZHAO X L, SHEN L, ZHANG N N, et al. Stable binder boosting sulfide solid electrolyte thin membrane for all-solid-state lithium batteries[J]. Energy Material Advances, 2024, 2024: 74. DOI: 10.34133/energymatadv.0074. |
| [27] | LI R, MAO Y Q, CHEN N, et al. Modified poly(vinylidene fluoride) polymer binder enables ultrathin sulfide solid electrolyte membrane for all-solid-state batteries[J]. Journal of Energy Storage, 2025, 106: 114859. DOI: 10.1016/j.est.2024.114859. |
| [28] | KIM K T, OH D Y, JUN S, et al. Tailoring slurries using cosolvents and Li salt targeting practical all-solid-state batteries employing sulfide solid electrolytes[J]. Advanced Energy Materials, 2021, 11(17): 2003766. DOI: 10.1002/aenm.202003766. |
| [29] | LEE Y-G, FUJIKI S, JUNG C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J]. Nature Energy, 2020, 5(4): 299-308. DOI: 10.1038/s41560-020-0575-z. |
| [30] | LI J C, MA C, CHI M F, et al. Solid electrolyte: The key for high-voltage lithium batteries[J]. Advanced Energy Materials, 2015, 5(4): 1401408. DOI: 10.1002/aenm.201401408. |
| [31] | XU R C, HAN F D, JI X, et al. Interface engineering of sulfide electrolytes for all-solid-state lithium batteries[J]. Nano Energy, 2018, 53: 958-966. DOI: 10.1016/j.nanoen.2018.09.061. |
| [32] | YAMAMOTO M, TERAUCHI Y, SAKUDA A, et al. Binder-free sheet-type all-solid-state batteries with enhanced rate capabilities and high energy densities[J]. Scientific Reports, 2018, 8: 1212. DOI: 10.1038/s41598-018-19398-8. |
| [33] | EMLEY B, LIANG Y L, CHEN R, et al. On the quality of tape-cast thin films of sulfide electrolytes for solid-state batteries[J]. Materials Today Physics, 2021, 18: 100397. DOI: 10.1016/j.mtphys.2021.100397. |
| [34] | LI Y, CAO D, ARNOLD W, et al. Scalable fabrication of freestanding sulfide electrolyte membranes via doctor-blading[J]. Energy Storage Materials, 2020, 31: 344-352. |
| [35] | LIU S J, ZHOU L, HAN J, et al. Super long-cycling all-solid-state battery with thin Li6PS5Cl-based electrolyte[J]. Advanced Energy Materials, 2022, 12(25): 2200660. DOI: 10.1002/aenm.202200660. |
| [36] | NAM Y J, CHO S J, OH D Y, et al. Bendable and thin sulfide solid electrolyte film: A new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries[J]. Nano Letters, 2015, 15(5): 3317-3323. DOI: 10.1021/acs.nanolett.5b00538. |
| [37] | XU R C, YUE J, LIU S F, et al. Cathode-supported all-solid-state lithium-sulfur batteries with high cell-level energy density[J]. ACS Energy Letters, 2019, 4(5): 1073-1079. DOI: 10.1021/acsenergylett.9b00430. |
| [38] | KIM D, LEE H, ROH Y, et al. Thin, highly ionic conductive, and mechanically robust frame-based solid electrolyte membrane for all-solid-state Li batteries[J]. Advanced Energy Materials, 2024, 14(2): 2302596. DOI: 10.1002/aenm.202302596. |
| [39] | WANG Y T, JU J W, DONG S M, et al. Facile design of sulfide-based all solid-state lithium metal battery: in situ polymerization within self-supported porous argyrodite skeleton[J]. Advanced Functional Materials, 2021, 31(28): 2101523. DOI: 10.1002/adfm. 202101523. |
| [40] | KIM D H, LEE H A, SONG Y B, et al. Sheet-type Li6PS5Cl-infiltrated Si anodes fabricated by solution process for all-solid-state lithium-ion batteries[J]. Journal of Power Sources, 2019, 426: 143-150. DOI: 10.1016/j.jpowsour.2019.04.028. |
| [41] | XI L, LI Y, ZHANG D C, et al. The contact interface engineering of all-sulfide-based solid state batteries via infiltrating dissoluble sulfide electrolyte[J]. Energy & Environmental Materials, 2023, 6(6): e12461. DOI: 10.1002/eem2.12461. |
| [42] | GAO X J, ZHENG M, YANG X F, et al. Emerging application of 3D-printing techniques in lithium batteries: From liquid to solid[J]. Materials Today, 2022, 59: 161-181. DOI: 10.1016/j.mattod.2022. 07.016. |
| [43] | TU Z T, CHEN K Q, LIU S J, et al. 3D printing of solid electrolyte and the application in all-solid-state batteries[J]. Small Methods, 2025, 9(7): 2401912. DOI: 10.1002/smtd.202401912. |
| [44] | XU F Q, WU Y J, WANG L T, et al. Low-pressure sulfide all-solid-state lithium-metal pouch cell by self-limiting electrolyte design[J]. Advanced Energy Materials, 2025, 15(23): 2405369. DOI: 10.1002/ aenm.202405369. |
| [45] | CAI J S, FAN Z D, JIN J, et al. Expediting the electrochemical kinetics of 3D-printed sulfur cathodes for Li-S batteries with high rate capability and areal capacity[J]. Nano Energy, 2020, 75: 104970. DOI: 10.1016/j.nanoen.2020.104970. |
| [46] | DOERRER C, METZLER M, MATTHEWS G, et al. Spraying Li6PS5Cl and silver-carbon multilayers to facilitate large-scale fabrication of all-solid-state batteries[J]. Device, 2024, 2(8): 100468. DOI: 10.1016/j.device.2024.100468. |
| [47] | JING S H, LIU Y C, LU Y, et al. Scalable preparation of asymmetrical bilayer sulfide/halide electrolyte membranes for all-solid-state batteries with high voltage[J]. Science China Technological Sciences, 2025, 68(3): 1320103. DOI: 10.1007/s11431-024-2847-8. |
| [48] | CUI Y L, LIU S F, WANG D H, et al. A facile way to construct stable and ionic conductive lithium sulfide nanoparticles composed solid electrolyte interphase on Li metal anode[J]. Advanced Functional Materials, 2021, 31(3): 2006380. DOI: 10. 1002/adfm.202006380. |
| [49] | FAN B, FANG Y X, XUE B, et al. Spray-printed flexible Li2S cathode with inorganic ion-conductive binder nano-Li3PS4[J]. ACS Applied Materials & Interfaces, 2024, 16(6): 7182-7188. DOI: 10.1021/acsami.3c16731. |
| [50] | JIANG Z, PENG H L, LI J R, et al. A facile path from fast synthesis of Li-argyrodite conductor to dry forming ultrathin electrolyte membrane for high-energy-density all-solid-state lithium batteries[J]. Journal of Energy Chemistry, 2022, 74: 309-316. DOI: 10.1016/j.jechem.2022.07.029. |
| [51] | WHITELEY J M, TAYNTON P, ZHANG W, et al. Ultra-thin solid-state Li-ion electrolyte membrane facilitated by a self-healing polymer matrix[J]. Advanced Materials, 2015, 27(43): 6922-6927. DOI: 10.1002/adma.201502636. |
| [52] | YERSAK T, SALVADOR J R, SCHMIDT R D, et al. Hot pressed, fiber-reinforced (Li2S)70(P2S5)30 solid-state electrolyte separators for Li metal batteries[J]. ACS Applied Energy Materials, 2019, 2(5): 3523-3531. DOI: 10.1021/acsaem.9b00290. |
| [53] | HIPPAUF F, SCHUMM B, DOERFLER S, et al. Sulfide electrolyte integration in flexible solid-state batteries [J]. Energy Storage Materials, 2019, 21: 390-398. |
| [54] | SU Z K, LI G, ZHANG J J. Coaxial nanofiber binders integrating thin and robust sulfide solid electrolytes for high-performance all-solid-state lithium battery[J]. Advanced Functional Materials, 2025, 35(7): 2415409. DOI: 10.1002/adfm.202415409. |
| [55] | JIANG T L, HE P G, LIANG Y H, et al. All-dry synthesis of self-supporting thin Li10GeP2S12 membrane and interface engineering for solid state lithium metal batteries[J]. Chemical Engineering Journal, 2021, 421: 129965. DOI: 10.1016/j.cej.2021.129965. |
| [56] | LI D B, LIU H, WANG C, et al. High ionic conductive, mechanical robust sulfide solid electrolyte films and interface design for all-solid-state lithium metal batteries[J]. Advanced Functional Materials, 2024, 34(27): 2315555. DOI: 10.1002/adfm.202315555. |
| [1] | 徐章杰, 孙铮岳, 张鑫焱, 张吉亮, 于颖超, 董闯. FeOOH包覆改性FeS锂离子电池负极材料[J]. 储能科学与技术, 2025, 14(6): 2232-2239. |
| [2] | 方靖, 杨续来, 戴涛, 孙菲. 锂离子电池硅负极用聚合物黏结剂研究进展[J]. 储能科学与技术, 2024, 13(11): 3811-3825. |
| [3] | 陈育新, 杨家沐, 练成, 刘洪来. 基于相场模型的锂电池电极浆料稳定涂布窗口分析[J]. 储能科学与技术, 2023, 12(7): 2185-2193. |
| [4] | 阮晶晶, 刘福园, 李珅珅, 高桂红, 刘艳侠. 碳还原法制备棒状硅基材料及其在锂浆料电池中的应用[J]. 储能科学与技术, 2023, 12(4): 1051-1058. |
| [5] | 高桂红, 李珅珅, 刘福园, 巫湘坤, 刘艳侠. 颗粒级配对锂浆料电池性能的影响[J]. 储能科学与技术, 2023, 12(2): 329-338. |
| [6] | 高桂红, 刘福园, 李珅珅, 巫湘坤, 刘艳侠. 二元导电剂对锂浆料电池性能的影响[J]. 储能科学与技术, 2023, 12(11): 3299-3306. |
| [7] | 郭雨竹, 梁春军, 孙馥林, 宫宏康, 宋奇, 朱婷, 张晨晖. 碳电极浆料作为阴极材料的快速充放电铝离子电池[J]. 储能科学与技术, 2023, 12(1): 16-22. |
| [8] | 何凤荣, 张啟文, 郭德超, 郭义敏, 郭孝东. 电极结构对(NCM+AC)/HC混合型电容器电性能的影响[J]. 储能科学与技术, 2022, 11(7): 2051-2058. |
| [9] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
| [10] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
| [11] | 刘大进, 吴强, 何仁杰, 余创, 谢佳, 程时杰. 生物高分子在锂离子电池硅负极中的研究进展[J]. 储能科学与技术, 2021, 10(6): 2156-2168. |
| [12] | 胡铭昌, 周雪晴, 黄雪妍, 薛建军. 无溶剂制备锌空气电极及电池性能[J]. 储能科学与技术, 2021, 10(6): 2090-2096. |
| [13] | 郭德超, 郭义敏, 张啟文, 慈祥云, 何凤荣. 锂离子电池用无溶剂干法电极的制备及其性能研究[J]. 储能科学与技术, 2021, 10(4): 1311-1316. |
| [14] | 李林林, 王昱杰, 门一飞, 杨伟, 邹汉波, 陈胜洲. 湿法冶金回收技术中无机酸作为浸出剂的研究进展[J]. 储能科学与技术, 2021, 10(1): 68-76. |
| [15] | 余晨露, 田晓华, 张哲娟, 孙 卓. 锂离子电池硅基负极比容量提升的研究进展[J]. 储能科学与技术, 2020, 9(6): 1614-1628. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||