| [1] |
SHIH C F, ZHANG T, LI J H, et al. Powering the future with liquid sunshine[J]. Joule, 2018, 2(10): 1925-1949. DOI: 10.1016/j.joule. 2018.08.016.
|
| [2] |
SENGODAN S, LAN R, HUMPHREYS J, et al. Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 761-780. DOI: 10.1016/j.rser.2017.09.071.
|
| [3] |
ANDERSSON J, GRÖNKVIST S. Large-scale storage of hydrogen[J]. International Journal of Hydrogen Energy, 2019, 44(23): 11901-11919. DOI: 10.1016/j.ijhydene.2019.03.063.
|
| [4] |
SHAARI N, KAMARUDIN S K, BAHRU R, et al. Progress and challenges: Review for direct liquid fuel cell[J]. International Journal of Energy Research, 2021, 45(5): 6644-6688. DOI: 10. 1002/er.6353.
|
| [5] |
VAN BIERT L, GODJEVAC M, VISSER K, et al. A review of fuel cell systems for maritime applications[J]. Journal of Power Sources, 2016, 327: 345-364. DOI: 10.1016/j.jpowsour. 2016. 07.007.
|
| [6] |
孔晨华, 张建军, 李旺, 等. 燃料电池在无人机高压输电线路验电系统中的应用展望[J]. 储能科学与技术, 2024, 13(2): 492-494. DOI: 10.19799/j.cnki.2095-4239.2024.0012.
|
|
KONG C H, ZHANG J J, LI W, et al. Application prospect of fuel cell in UAVS high voltage transmission line checking system[J]. Energy Storage Science and Technology, 2024, 13(2): 492-494. DOI: 10.19799/j.cnki.2095-4239.2024.0012.
|
| [7] |
XIA Z X, ZHANG X M, SUN H, et al. Recent advances in multi-scale design and construction of materials for direct methanol fuel cells[J]. Nano Energy, 2019, 65: 104048. DOI: 10.1016/j.nanoen. 2019.104048.
|
| [8] |
KAMARUDIN S K, ACHMAD F, DAUD W R W. Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices[J]. International Journal of Hydrogen Energy, 2009, 34(16): 6902-6916. DOI: 10.1016/j.ijhydene.2009.06.013.
|
| [9] |
ALIAS M S, KAMARUDIN S K, ZAINOODIN A M, et al. Active direct methanol fuel cell: An overview[J]. International Journal of Hydrogen Energy, 2020, 45(38): 19620-19641. DOI: 10.1016/j.ijhydene.2020.04.202.
|
| [10] |
TONG Y Y, YAN X, LIANG J, et al. Metal-based electrocatalysts for methanol electro-oxidation: Progress, opportunities, and challenges[J]. Small, 2021, 17(9): 1904126. DOI: 10.1002/smll. 201904126.
|
| [11] |
AHMAD ZAKIL F, KAMARUDIN S K, BASRI S. Modified Nafion membranes for direct alcohol fuel cells: An overview[J]. Renewable and Sustainable Energy Reviews, 2016, 65: 841-852. DOI: 10.1016/j.rser.2016.07.040.
|
| [12] |
CHIKUMBA F T, TAMER M, AKYALÇıN L, et al. The development of sulfonated polyether ether ketone (sPEEK) and titanium silicon oxide (TiSiO4) composite membranes for DMFC applications[J]. International Journal of Hydrogen Energy, 2023, 48(37): 14038-14052. DOI: 10.1016/j.ijhydene.2022.12.293.
|
| [13] |
LIU G L, TSEN W C, WEN S. Sulfonated silica coated polyvinylidene fluoride electrospun nanofiber-based composite membranes for direct methanol fuel cells[J]. Materials & Design, 2020, 193: 108806. DOI: 10.1016/j.matdes.2020.108806.
|
| [14] |
CUI Y H, LIU Y C, WU J W, et al. Porous silicon-aluminium oxide particles functionalized with acid moieties: An innovative filler for enhanced Nafion-based membranes of direct methanol fuel cell[J]. Journal of Power Sources, 2018, 403: 118-126. DOI: 10.1016/j.jpowsour.2018.09.090.
|
| [15] |
MCCONNELL V P. Fuel cells feed power-hungry portable electronics[J]. Fuel Cells Bulletin, 2009, 2009(6): 12-16. DOI: 10. 1016/S1464-2859(09)70197-X.
|
| [16] |
杨敏, 裴向前, 郑建龙. 便携式燃料电池在军事上的应用[J]. 电源技术, 2013, 37(4): 696-699.
|
|
YANG M, PEI X Q, ZHENG J L. Military application of portable fuel cell[J]. Chinese Journal of Power Sources, 2013, 37(4): 696-699.
|
| [17] |
张振峰, 田心瑶, 孙海. Pt/MoCx的制备及其低温催化甲醇水蒸气重整制氢反应研究[J]. 应用化工, 2023, 52(9): 2556-2560, 2565. DOI: 10.16581/j.cnki.issn1671-3206.20230906.001.
|
|
ZHANG Z F, TIAN X Y, SUN H. Preparation of Pt/MoCx and its low-temperature catalytic steam reforming of methanol to hydrogen production[J]. Applied Chemical Industry, 2023, 52(9): 2556-2560, 2565. DOI: 10.16581/j.cnki.issn1671-3206. 20230906.001.
|
| [18] |
王胜年, 王树东, 吴迪镛, 等. 甲醇自热重整制氢反应分析[J]. 燃料化学学报, 2001, 29(3): 238-242.
|
|
WANG S N, WANG S D, WU D Y, et al. Analysis of autothermal reformer of H2 production for proton exchange membrane fuel cell vehicles[J]. Journal of Fuel Chemistry and Technology, 2001, 29(3): 238-242.
|
| [19] |
苏石龙, 张磊, 张艳, 等. 千瓦级PEMFC甲醇水蒸气重整制氢过程热力学模拟[J]. 石油化工高等学校学报, 2015, 28(2): 19-25.
|
|
SU S L, ZHANG L, ZHANG Y, et al. Thermodynamic simulation for hydrogen production in the methanol steam reforming system of kilowatt PEMFC[J]. Journal of Petrochemical Universities, 2015, 28(2): 19-25.
|
| [20] |
周伟, 李新颖, 钟雨晨, 等. 甲醇重整制氢微反应器的研究进展[J]. 厦门大学学报(自然科学版), 2021, 60(3): 598-613.
|
|
ZHOU W, LI X Y, ZHONG Y C, et al. Research progress of methanol steam reforming microreactors for hydrogen production[J]. Journal of Xiamen University (Natural Science), 2021, 60(3): 598-613.
|
| [21] |
ZHAO K, TIAN Z Y, ZHANG J R, et al. Methanol steam reforming reactor with fractal tree-shaped structures for photovoltaic-thermochemical hybrid power generation[J]. Applied Energy, 2023, 330: 120220. DOI: 10.1016/j.apenergy.2022.120220.
|
| [22] |
亓爱笃, 王树东, 洪学伦, 等. 甲醇氧化重整制氢过程(Ⅰ)反应条件对制氢过程的影响[J]. 化工学报, 2001, 52(12): 1095-1099.
|
|
QI A D, WANG S D, HONG X L, et al. On-board hydrogen generation by methanol partial oxidation(i) effect of reaction conditions on gross heat efficiency[J]. Journal of Chemical Industry and Engineering (China), 2001, 52(12): 1095-1099.
|
| [23] |
刘园园. 绿色能源和循环经济双翅飞翔—记醇水氢燃料电池一体机[Z]. 科技日报. 2017-01-10.
|
|
LIU Y Y. Green energy and circular economy soaring on dual wings: a report on alcohol-water hydrogen fuel cell integrated units [Z]. Science and Technology Daily. 2017-01-10.
|
| [24] |
徐润, 栾学斌, 夏国富, 等. 模块化分布式甲醇制氢系统开发和站内制氢实践[J]. 石油炼制与化工, 2023, 54(11): 1-7.
|
|
XU R, LUAN X B, XIA G F, et al. Development of a modular distributed system for hydrogen production from methanol and application in the hydrogen refueling station[J]. Petroleum Processing and Petrochemicals, 2023, 54(11): 1-7.
|
| [25] |
AILI D, HENKENSMEIER D, MARTIN S, et al. Polybenzi-midazole-based high-temperature polymer electrolyte membrane fuel cells: New insights and recent progress[J]. Electrochemical Energy Reviews, 2020, 3(4): 793-845. DOI: 10.1007/s41918-020-00080-5.
|
| [26] |
AVGOUROPOULOS G, PAXINOU A, NEOPHYTIDES S. In situ hydrogen utilization in an internal reforming methanol fuel cell[J]. International Journal of Hydrogen Energy, 2014, 39(31): 18103-18108. DOI: 10.1016/j.ijhydene.2014.03.101.
|
| [27] |
PAPAVASILIOU J, SCHÜTT C, KOLB G, et al. Technological aspects of an auxiliary power unit with internal reforming methanol fuel cell[J]. International Journal of Hydrogen Energy, 2019, 44(25): 12818-12828. DOI: 10.1016/j.ijhydene.2018.11.136.
|
| [28] |
DOKAMAINGAM P, ASSABUMRUNGRAT S, SOOTTITAN-TAWAT A, et al. Effect of operating conditions and gas flow patterns on the system performances of IIR-SOFC fueled by methanol[J]. International Journal of Hydrogen Energy, 2009, 34(15): 6415-6424. DOI: 10.1016/j.ijhydene.2009.05.105.
|
| [29] |
GUAN G Q, FUSHIMI C, TSUTSUMI A, et al. High-density circulating fluidized bed gasifier for advanced IGCC/IGFC—Advantages and challenges[J]. Particuology, 2010, 8(6): 602-606. DOI: 10.1016/j.partic.2010.07.013.
|
| [30] |
韩婷婷, 吴玉玺, 解子恒, 等. 固体氧化物燃料电池镍基阳极积碳机理及性能提升策略研究进展[J]. 储能科学与技术, 2021, 10(6): 1931-1942. DOI: 10.19799/j.cnki.2095-4239.2021.0148.
|
|
HAN T T, WU Y X, XIE Z H, et al. Recent advances in carbon deposition mechanism and performance improvement of Ni-based anode for solid oxide fuel cells[J]. Energy Storage Science and Technology, 2021, 10(6): 1931-1942. DOI: 10.19799/j.cnki. 2095-4239.2021.0148.
|
| [31] |
SASAKI K, TERAOKA Y. Equilibria in fuel cell gases[J]. Journal of the Electrochemical Society, 2003, 150(7): A885. DOI: 10.1149/1. 1577338.
|
| [32] |
陶泽宇, 刘航成, 刘建峰, 等. 燃料电池非铂基催化剂的研究进展[J]. 电池, 2024, 54(1): 103-106. DOI:10.19535/j.1001-1579.2024.01.023.
|
|
TAO Z Y, LIU H C, LIU J F, et al. Research progress in non-platinum-based catalysts for fuel cell[J]. Dianchi(Battery Bimonthly), 2024, 54(1): 103-106. DOI:10.19535/j.1001-1579.2024.01.023.
|
| [33] |
刘鑫宇, 张安安, 廖长江. 不同支撑结构的固体氧化物燃料电池数值模拟分析[J]. 储能科学与技术, 2024, 13(5): 1710-1720. DOI: 10. 19799/j.cnki.2095-4239.2023.0855.
|
|
LIU X Y, ZHANG An'an, LIAO C J. Numerical simulation analysis of solid oxide fuel cells with different support structures[J]. Energy Storage Science and Technology, 2024, 13(5): 1710-1720. DOI: 10.19799/j.cnki.2095-4239.2023.0855.
|
| [34] |
ZHOU J Y, WANG Z, HAN M F, et al. Optimization of a 30 kW SOFC combined heat and power system with different cycles and hydrocarbon fuels[J]. International Journal of Hydrogen Energy, 2022, 47(6): 4109-4119. DOI: 10.1016/j.ijhydene.2021.11.049.
|
| [35] |
李萍萍, 陈姗姗, 赵璐璐, 等. 整体煤气化固体氧化物燃料电池并网测试系统设计[J]. 储能科学与技术, 2021, 10(6): 2039-2045. DOI: 10.19799/j.cnki.2095-4239.2021.0100.
|
|
LI P P, CHEN S S, ZHAO L L, et al. Test design of integrated gasification solid oxide fuel cell(IG-SOFC) grid-connection technology[J]. Energy Storage Science and Technology, 2021, 10(6): 2039-2045. DOI: 10.19799/j.cnki.2095-4239.2021.0100.
|